The 7.14 %, 10 % and 12.5 % cambered plate as airfoil for windmill rotor blades. Aerodynamic characteristics, geometry, moment of inertia I and moment of resistance W.

ing. A. Kragten

November 2008

KD 398 (replaces KD 96)

It is allowed to copy this report for private use.

Engineering office Kragten Design Populierenlaan 51 5492 SG Sint-Oedenrode telephone: +31 413 475770 e-mail: <u>info@kdwindturbines.nl</u> website: <u>www.kdwindturbines.nl</u>

page

Contents		page
1	Introduction	3
2	The 7.14 % cambered plate airfoil characteristics	3
3	The 10 % cambered plate airfoil characteristics	5
4	The 12.5 % cambered plate airfoil characteristics	7
5	Determination of the cambered plate airfoil geometry 5.1 camber C = 7.14 % 5.2 camber C = 10 % 5.3 camber C = 12.5 %	9 10 10 10
6	Determination of the moment of inertia I and the moment of resistance W 6.1 camber C = 7.14 % 6.2 camber C = 10 % 6.3 camber C = 12.5 % 6.4 Example VIRYA-1.8 blade	11 12 12 12 12
7	References	13

1 Introduction

In report KD 35 (ref. 1) a method is given for the design of a windmill rotor. The blade of the rotor must be provided with an aerodynamic airfoil. In the examples in chapter 5.4 of KD 35 the Gö 623 airfoil is used. This is a good airfoil for small wind turbines and it can be used for wooden blades. It is used in the VIRYA-2.2, -3, -4.2 and -4.6 windmills developed by Kragten Design (KD). However wooden blades are rather difficult to manufacture, need to be painted very well and are sensible for damage during transport. Therefore KD is developing a range of small windmills using galvanised steel or stainless steel sheet for the rotor blades. The design tip speed ratios of these windmills are lying in between 3.5 and 6. All rotors have two or three blades with cambered plate airfoils. In figure 4.6 and 4.7 of KD 35 it can be seen that the airfoil must have a C_d/C_1 value of at least about 0.04 to realise a C_p th of 0.4.

The minimum C_d/C_1 value of a cambered plate depends on the rate of cambering. The camber C is the airfoil thickness a (not the plate thickness t) divided by the chord c multiplied by 100 %. 10 % cambering is very common for rotor blades used in water pumping windmills with design tip speed ratios in between 1 and 2. The 10 % cambered plate has been measured by different institutes and many measurements are given in the form of graphs and tables in report R443D (lit. 2). However, the minimum C_d/C_1 lays in between 0.045 and 0.07 depending on the Reynolds value. This is rather high for rotors with design tip speed ratios in between 3.5 and 6 and this requires a cambered plate with lesser cambering.

In report KD 96 (ref. 3) all information is given about the 7.14 % cambered airfoil. However, this report contains hand written graphs and pictures and can therefore not be sent by e-mail. Sometimes one wants to compare the 7.14 % cambered airfoil with the 10 % and 12.5 % cambered airfoil and the characteristics of these airfoils are therefore also included in this new report KD 398 which replaces the old report KD 96.

2 The 7.14 % cambered plate airfoil characteristics

The 7.14 % cambered plate has only been measured by Imperial College and the measurements are given only as C₁- α and C₁-C_d curves at page 3-6 of R443D. Unfortunately, the measuring points are not given in tables like it is done for many other airfoils. But the graphs are drawn accurately and the measuring points can be copied from the graphs. The C_d- α and the C_m- α curves are not given however, the C_d- α curve can be derived from the C₁- α and C₁-C_d curves. The airfoil has been measured for the Reynolds values (Re) 1.2 * 10⁵, 1.7 * 10⁵, 2.5 * 10⁵ and 3.4 * 10⁵. The plate thickness t is given as 1.63 mm. However, the chord has not been given but it is expected to be 100 mm. The minimum C_d/C₁ value for the 7.14 % cambered plate is lying in between 0.03 and 0.04 depending on Re, which is low enough to use this airfoil for rotors with rather high tip speed ratios. However, report R343D is no longer available and it was not possible to find the original graphs of Imperial College. Therefore the graphs given at page 3-6 of report R343D are copied and given as figures 1 and 2 in this report KD 398. The C₁- α curves for larger values of Re are given only for a small α range. The C₁-C_d curve for Re = 1.7 * 10⁵ is lying right from the C₁-C_d curve for Re = 1.2 * 10⁵ which is strange because normally the drag D increases at decreasing Re.

The C_d/C_1 ratio for a certain point on C_l/C_d curve can be determined by drawing a line through this point and the origin. The C_d value of the point of intersection of this line with the horizontal line for $C_1 = 1$, gives the C_d/C_1 ratio. A line through the origin which is touching the C_l-C_d curve has the minimum C_d/C_1 ratio. The touching point is called the optimum C_l value.

For the calculation of the starting torque coefficient $C_{q \text{ start}}$, as given by formula 6.12 of KD 35, C_l values for large angles α are needed. However, the 7.14 % cambered plate has only been measured up to $\alpha = 20^{\circ}$. For large angles α the airfoil is completely stalling and therefore the rate of cambering will have only a limited effect on the C_l - α and C_d - α curves. It might be acceptable to use the curve for a 10 % cambered plate, given in figure 5.

fig. 1 C₁- α curves for 7.14 % cambered plate for four Reynolds values

fig. 2 C_l - C_d curves for 7.14 % cambered plate for four Reynolds values

3 The 10 % cambered plate airfoil characteristics

The 10 % cambered plate has been measured by Imperial College, by Volkers and by Bruining (of Delft University of Technology). The measurements of Imperial College are given only as C_{1} - α and C_{1} - C_{d} curves at page 3-7 of R443D. The minimum C_{d}/C_{1} value for the 10 % cambered plate is lying in between 0.04 and 0.06 depending on Re, which is substantial higher than for the 7.14 % cambered plate. The C_{d}/C_{1} ratio determines the maximum C_{p} (see chapter 4.3 of KD 35) and the 10 % cambered plate can therefore only be used for rotors with rather low design tip speed ratios.

The measurements of Volkers are given on page 3-11 of R443D. The measurements of Bruining are given on page 3-12 up to 3-18 of R443D. The measuring points of Bruining are also given in tables on page 3-41 up to 3-44 of R443D. If the measurements of Imperial College, Volkers and Bruining are compared it can be seen that there is some difference. This must be caused by the use of different wind tunnels and measuring equipment. Because I want to compare airfoils with different camber, I have used the measurements of Imperial College for the normal α region. The C_I- α curves, which are copied from page 3-7 of R443D, are given as figure 3. The C_I/C_d curves are given as figure 4.

For the calculation of the starting torque coefficient $C_{q \text{ start}}$, as given by formula 6.12 of KD 35, C_1 values for large angles α are needed. However, the 10 % cambered plate has only been measured by Imperial College up to $\alpha = 20^{\circ}$ for Re = 1.2×10^5 . Therefore, for the large angles α , the measurements of Bruining have been used. At starting, the Reynolds value is rather low and the measuring points for Re = 1×10^5 have been used which are given in the table at page 3-42 of R443D. The C₁- α curve for large angles α is given in figure 5. The measurements of Bruining for Re = 1.2×10^5 are used for $-2^{\circ} < \alpha < 20^{\circ}$. The measurements of Bruining for Re = 1.2×10^5 are used for $-2^{\circ} < \alpha < 90^{\circ}$. It can be seen that there is some difference in between the curves. This might be caused by the different Reynolds value or by different wind tunnel turbulence or different measuring equipment.

fig. 3 C_{I} - α curves for 10 % cambered plate for four Reynolds values

fig. 4 C_l-C_d curves for 10 % cambered plate for four Reynolds values

fig. 5 C₁- α curves for 10 % cambered plate for large angles α . Measurements of 1.2 * 10⁵ from Imperial College. Measurements of 1 * 10⁵ from Bruining.

4 The 12.5 % cambered plate airfoil characteristics

The 12.5 % cambered plate has only been measured by Imperial College. The measurements of are given only as C_{I} - α and C_{I} - C_{d} curves at page 3-8 of R443D. The minimum C_{d}/C_{I} value for the 12.5 % cambered plate is lying in between 0.055 and 0.07 depending on Re, which is substantial higher than for the 10 % and the 7.14 % cambered plate. The C_{d}/C_{I} ratio determines the maximum C_{p} (see chapter 4.3 of KD 35) and the 12.5 % cambered plate can therefore only be used for rotors with rather low design tip speed ratios.

The C₁- α curves, which are copied from page 3-8 of R443D, are given as figure 6. The C₁/C_d curves are given as figure 7. The C₁-C_d curve is not given for Re = 3.4 * 10⁵ in R443D so it can't be copied.

fig. 6 C₁- α curves for 12.5 % cambered plate for four Reynolds values

fig. 7 C₁-C_d curves for 12.5 % cambered plate for three Reynolds values

If the C₁- α curves of fig. 1, fig. 3 and fig. 6 for different camber are compared, it can be seen that the highest lift coefficients can be realised for the highest camber. A higher lift coefficient means that a smaller chord c is required to generate a certain lift L. However, especially the curves for 12.5 % camber are very sensitive for the Reynolds value and much higher angles α are needed to realise a certain lift coefficient for a low Reynolds number than for a high one. A high angle α results in a smaller blade angle β for a certain angle ϕ in between the relative wind direction and the rotor plane. A smaller blade angle β results in a lower starting torque coefficient.

If the C₁-C_d curves of fig. 2, fig. 4 and fig. 7 for different cambers are compared, it can be seen that the lowest C_d/C₁ ratio can be realised for the lowest camber. A low C_d/C₁ ratio result in a high maximum power coefficient C_p (see report KD 35 chapter 4.3.3). The C₁-C_d curves for 12.5 % camber are also very sensitive for the Reynolds value and have a strong discontinuity (the measuring points of fig. 6 and 7 are therefore connected by straight lines in stead of curved lines for the other five figures). This means that a low C_d/C₁ ratio is only possible for a certain high optimum C₁ value. If the C₁ value is higher or lower than the optimum C₁ value, the C_d/C₁ ratio is very much lower than for the optimum C₁ value.

Windmill rotors can be designed for the optimum C_1 value and in this case they will have the maximum C_p for the given airfoil. However, this results in a rotor with a varying chord and blade angle. Windmill rotors can also be designed for a constant chord but this results in an increasing lift coefficient for decreasing radius (see report KD 35 chapter 5.4.2). But variation in the lift coefficient is only acceptable for airfoils which have a good C_d/C_1 ratio for a large C_1 range and so for a large α range. The 7.14 % cambered airfoil is very good on this point but the 12.5 % cambered airfoil is very bad. To my opinion a 12.5 % airfoil should never be used for a rotor with constant chord blades. For rotors with a high design tip speed ratio, only a 7.14 % cambered airfoil has an acceptable low C_d/C_1 value for an acceptable large α range. For rotors with a design tip speed ratio up to about 3 one can use a 10 % cambered airfoil. However, if the airfoil is disturbed by a supporting pipe, one has the use the characteristics of a 10 % cambered plate with a pipe (also measured by Bruining).

5 Determination of the cambered plate airfoil geometry

A cambered plate airfoil is made from a plate with width b. The chord c and the airfoil thickness a depend on the cambering rate. The cambering radius r_c is important for manufacture. The relevant magnitudes are given in figure 8.

fig. 8 Geometry cambered plate airfoil

The expressions for a, c, the cambering angle α_c (in radian) and the camber C for a certain plate width b and a certain cambering radius r_c is found as follows.

$$b/2 \pi r_{c} = 2 \alpha_{c}/2 \pi \text{ or}$$

$$\alpha_{c} = b/2 r_{c} \quad (\alpha_{c} \text{ in radian}) \quad (1)$$

$$a = r_{c} - d \quad (mm) \quad (2)$$

$$d = r_{c} * \cos\alpha_{c} \quad (mm) \quad (3)$$

$$(2) + (3) \text{ gives:}$$

$$a = r_{c} (1 - \cos\alpha_{c}) \quad (mm) \quad (\alpha_{c} \text{ in radian}) \quad (4)$$

$$\frac{1}{2} c / r_{c} = \sin\alpha_{c} \text{ or}$$

$$c = 2 r_{c} * \sin\alpha_{c} \quad (mm) \quad (\alpha_{c} \text{ in radian}) \quad (5)$$

camber C = a/c * 100 (%) (6)
(4) + (5) + (6) gives:

$$C = \frac{1 - \cos\alpha_c}{2 + \sin\alpha_c} * 100$$
 (%) (\alpha_c in radian) (7)

Formulas 1, 4, 5 and 7 can be used to calculate α_c , a, c and C if b and r_c are given (the calculator has to be set in the mode "radian"). However, it is very difficult to find expressions for α_c , a, c and r_c if b and C are given like this is the practical situation for a cambered plate. This problem can be solved by estimating different values for r_c and calculating the camber C till the correct camber is gained. This is done for a width b = 100 mm for the three different cambers. The following result is gained:

5.1 camber C = 7.14 %

 $\begin{array}{l} b = 100 \text{ mm} \\ r_c = 176 \text{ mm} \\ \alpha_c = 0.2840909 \text{ radian} \\ a = 7.055 \text{ mm} \\ c = 98.660 \text{ mm} \\ a/c = 0.0715 \text{ so } C = 7.15 \ \% \end{array}$

For other widths b, the values for a, c and r_c vary proportional with the scale factor.

5.2 camber C = 10 %

b = 100 mm $r_c = 126.5 \text{ mm}$ $\alpha_c = 0.3952569 \text{ radian}$ a = 9.753 mm c = 97.416 mma/c = 0.1001 so C = 10.01 %

For other widths b, the values for a, c and r_c vary proportional with the scale factor.

5.3 camber C = 12.5 %

b = 100 mm $r_c = 102 \text{ mm}$ $\alpha_c = 0.4901961 \text{ radian}$ a = 12.011 mm c = 96.043 mma/c = 0.1251 so C = 12.51 %

For other widths b, the values for a, c and r_c vary proportional with the scale factor.

The magnitudes which are important for the bending moment of inertia I which determines the bending stiffness and the moment of resistance W which determines the bending strength are given in figure 9.

fig. 9 Cambered plate airfoil and position of the neutral line

The bending moment of inertia I is given by:

$$I = r_c^3 * t (\alpha_c + \sin\alpha_c * \cos\alpha_c - 2/\alpha_c * \sin^2\alpha_c) \quad (mm^4) \quad (\alpha_c \text{ in radian})$$
(8)

 α_c has to be calculated very accurate because the term in between brackets is very small. The distance e from the neutral line till the lower side of the airfoil is given by:

 $e = r_c (1/\alpha_c * \sin\alpha_c - \cos\alpha_c) \quad (mm) \quad (\alpha_c \text{ in radian})$ (9)

The moment of resistance W is I / e so:

$$r_{c}^{2} * t (\alpha_{c} + \sin\alpha_{c} * \cos\alpha_{c} - 2/\alpha_{c} * \sin^{2}\alpha_{c})$$

W = ------ (mm³) (\alpha_{c} in radian) (10)
(1/\alpha_{c} * \sin\alpha_{c} - \cos\alpha_{c})

6.1 camber C = 7.14 %

Substitution of $\alpha_c = 0.2840909$ radian in formula 8 gives:

$$I = 0.000081301 r_c^3 * t \quad (mm^4)$$
(11)

Substitution of $\alpha_c = 0.2840909$ radian in formula 10 gives:

$$W = 0.0030466 r_c^2 * t \quad (mm^3)$$
(12)

6.2 camber C = 10 %

Substitution of $\alpha_c = 0.3952569$ radian in formula 8 gives:

$$I = 0.00041929 r_c^{3} * t \quad (mm^4)$$
(13)

Substitution of $\alpha_c = 0.3952569$ radian in formula 10 gives:

 $W = 0.0081786 r_c^2 * t \quad (mm^3)$ (14)

6.3 camber C = 12.5 %

Substitution of $\alpha_c = 0.4901961$ radian in formula 8 gives:

$$I = 0.0012155 r_c^3 * t \quad (mm^4)$$
(15)

Substitution of $\alpha_c = 0.4901961$ radian in formula 10 gives:

$$W = 0.015545 r_c^2 * t \quad (mm^3)$$
(16)

6.4 Example VIRYA-1.8 blade

Formulas 11 and 12 are now used to calculate I and W for the VIRYA-1.8 blade which has a plate width b = 125 mm, a thickness t = 2 mm and 7.14 % camber.

The plate width is 125 mm, so the scale factor is 125 / 100 = 1.25. This results in $r_c = 1.25 * 176 = 220$ mm. Substitution of $r_c = 220$ mm and t = 2 mm in formula 11 gives I = 1731.4 mm⁴. The moment of inertia I of a flat plate with b = 125 mm and t = 2 mm is $1/12 * 125 * 2^3 = 83.33$ mm⁴. So the 7.14 % camber results in an increase of I, and so in an increase of the bending stiffness, with a factor 1731.38 / 83.33 = 20.77. Be alert, this factor is only constant for a ratio of b / t = 125 / 2 = 62.5 and for 7.14 % camber.

The torsion stiffness doesn't increase by the camber. This is the reason why cambered plate airfoils are rather sensible for an aerodynamic instability called flutter, if the plate thickness is taken too small.

Substitution of $r_c = 220$ mm and t = 2 mm in formula 12 gives W = 294.9 mm³. The moment of resistance W of a flat plate with b = 125 mm and t = 2 mm is $1/6 * 125 * 2^2 = 83.33$ mm³. So the 7.14 % camber results in an increase of W, and so in an increase of the bending strength, with a factor 294.9 / 83.33 = 3.54. Be alert, this factor is only constant for a ratio of b / t = 125 / 2 = 62.5 and for 7.14 % camber.

7 References

- 1 Kragten A. Rotor design and matching for horizontal axis wind turbines, January 1999, latest review November 2015, free public report KD 35, engineering office Kragten Design, Populierenlaan 51, 5492 SG Sint-Oedenrode, The Netherlands.
- 2 Hageman A. Catalogue of Aerodynamic Characteristics of Airfoils in the Reynolds number range $10^4 - 10^6$, July 1980, report R443D, (no longer available) University of Technology Eindhoven, Department of Physics, Laboratory of Fluid Dynamics and Heat Transfer, (former) Wind Energy Group.
- 3 Kragten A. The 7.14 % cambered plate as airfoil for windmill rotor blades, Aerodynamic characteristics, geometry, moment of inertia I and moment of resistance W, July 2002, modified July 2008, report KD 96, engineering office Kragten Design, Populierenlaan 51, 5492 SG Sint-Oedenrode, The Netherlands.