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List of symbols 

 

A area (m2) 

Ak area swept by a rotor blade with length k (m2) 

Ar rotor area (m2) 

A1 area of the stream-tube far before the rotor (m2) 

A2 area of the stream-tube far behind the rotor (m2) 

arctan arc tangent (-) 

B number of blades (-) 

b width of a blade section, length of an aerofoil (m) 

c blade chord (m) 

clin chord after linearisation (m) 

Cm0.25  moment coefficient around the quarter chord point (-) 

cth theoretical chord (m) 

Cd drag coefficient (-) 

Cd/Cl lin Cd/Cl ratio after linearisation (-) 

Cd/Cl th theoretical Cd/Cl ratio (-) 

Cl lift coefficient (-) 

Cl lin lift coefficient after linearisation (-) 

Cl opt optimum lift coefficient (-) 

Cl th theoretical lift coefficient (-) 

Cp power coefficient (-) 

Cp max maximum power coefficient (-) 

Cp id power coefficient for B =  and Cd/Cl = 0 (-) 

Cp th theoretical power coefficient (-) 

Cp  power coefficient at angle  (-) 

Cq torque coefficient (-) 

Cq  torque coefficient at angle  (-) 

Cq opt optimum torque coefficient (-) 

Cq start starting torque coefficient (-) 

Ct thrust coefficient (-) 

Ct  thrust coefficient at angle  (-) 

D rotor diameter (m) 

D drag force (N) 

E energy (Ws) 

Ei energy produced for a certain wind speed interval (kWh) 

Etot  total energy produced for all wind speed intervals (kWh) 

Ft thrust force acting on the rotor centre (N) 

Ft  thrust force at angle  (N) 

Fu resulting force on a blade section in the direction of U (N) 

i accelerating gear ratio (-) 

k blade length (m) 

k’  effective blade length (m) 

L lift force (N) 

M aerodynamic moment  (Nm) 

m mass (kg) 
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n rotational speed of the rotor (rpm) 

n rotational speed at angle  (rpm) 

ngen rotational speed of the generator (rpm) 

P power (W) 

PA1 power at area A1 (W) 

P power at angle  (W) 

Pel electrical generator power (W) 

Pmax maximum power (W) 

Pu power generated by Fu (W) 

P power at angle  (W) 

Pmech mechanical generator power (W) 

Pw power in the undisturbed wind (W) 

Q torque (Nm) 

Qbl th theoretical torque of one blade (Nm) 

Q torque at angle  (Nm) 

Qgen generator torque (Nm) 

Qrot th theoretical torque of the rotor (Nm) 

Qs sticking torque of the generator (Nm) 

Qstart starting torque (Nm) 

R radius at the blade tip (m) 

Re Reynolds number (-) 

Re r local Reynolds number (-) 

r local radius (m) 

rm radius at the middle of the blade (m) 

T resulting thrust force on a blade section (N) 

t time (s) 

t profile thickness (m) 

tan tangent (-) 

U local blade speed (m/s) 

V undisturbed wind speed (m/s) 

Vcut in wind speed at which the windmill starts to generate electricity (m/s) 

Vrated wind speed at which the maximum electrical power is reached (m/s) 

Vstart wind speed at which the rotor starts rotating (m/s) 

Vtip tip speed (m/s) 

W relative wind speed (m/s) 
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 angle of attack (°) 

lin angle  after linearisation (°)

th theoretical angle  (°)

 angle between the rotor plane and the zero-line of the aerofoil (°)

lin angle  after linearisation (°)

th theoretical angle  (°)

 yaw angle, angle between wind direction and rotor axis (°)

 angle between direction of relative wind W and rotor plane (°) 

m  mass flow (kg/s) 

 kinematic viscosity (m2/s)

gen generator efficiency factor (in KD reports it is given in %) (-)

tr transmission efficiency factor (-)

 air density (kg/m3)

 tip speed ratio (-)

d design tip speed ratio (-)

r local speed ratio (-)

opt optimum tip speed ratio (-)

r d local design speed ratio (-)

unl unloaded tip speed ratio (-)

 tip speed ratio at angle  (-)

 3.14159.... (-)

 angular velocity of the rotor (rad/s) 
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1  Introduction 

 

1.1 General 
 

From 1975 until 1990 the Dutch organisation CWD (Consultancy services Wind energy 

Developing countries), published many reports about wind energy and water pumping 

windmills. I worked for almost fifteen year as a mechanical engineer and designer in the 

wind energy group of the University of Technology Eindhoven (TUE), one of the 

members of CWD.  

 Windmill rotors were designed at that time using reports which are now difficult to 

obtain. After CWD ceased to function in July 1990, I started my own private 

engineering office Kragten Design (KD), specialising in the development of small 

electricity generating windmills and in providing a wind energy consultancy service. 

I wrote many reports on generator tests and also a report on matching windmill rotor 

and generator.  

 I decided to write and publish this report KD 35, because I believe there is a need 

for such a report in which the basic knowledge of rotor design and matching is brought 

together, so that only one report is necessary to design a windmill rotor. The most 

important reports which I used are: 

1 Horizontal axis fast running wind turbines for developing countries, CWD 

publication 76-1 (ref. 9.1). 

2 Rotor Design for horizontal axis windmills, CWD publication 77-1 (ref. 9.2).  

3 Catalogue of Aerodynamic Characteristics of Aerofoils in the Reynolds number 

range 104-106, TUE report R 443 D, (ref. 9.3). 

4 The Gö 622, Gö 623, Gö 624 and Gö 625 airfoils with thickness/chord ratios of 

respectively 8 %, 12 %, 16 % and 20 % for use in windmill rotor blades, report 

KD 463  (ref. 9.4). 

5 Rotor Design part 2, TUE report R 1078 D, (ref. 9.5). 

6 Rotors, TUE report (has no R number), (ref. 9.6). 

7 Matching of windmill rotor and generator (in Dutch), report KD 05, (ref. 9.7). 

 

The report Rotors (ref. 9.6) and Rotor Design part 2 (ref. 9.5) link together and replace 

the original CWD publication Rotor Design for horizontal axis windmills (ref. 9.2).  

 Although knowledge from existing reports is used, no parts were simply copied. 

The whole report was typed anew (in Word 97 and Windows 95). All figures were also 

redrawn (the ordinary figures using the drawing option of Word 97 and the graphs in 

Excel 97). Chapters 1 to 4 are rewritten completely. Chapters 5, 6 and 7 are roughly 

based on Rotor Design part 2 (ref. 9.5), but the contents and the examples have been 

changed considerably. Chapter 8 is more or less a translation of KD report KD 05 

(ref. 9.7).  

 Chapters 2, 3 and 4 give general aerodynamic knowledge on horizontal axis wind 

turbines. Chapter 5 gives the rotor design theory. Chapter 6 provides a simple theory to 

estimate rotor characteristics. Chapter 7 discusses the influence of yawing of the rotor 

on the rotor formulas. This knowledge is important if the windmill has a safety system 

which turns the rotor out of the wind. Chapter 8 provides information on matching rotor 

and generator. Chapters 5, 6, 7 and 8 conclude with an example in which the theory is 

demonstrated. 

 

On request, I am available to give courses on wind energy based on the knowledge in 

this report. The course can be given in English or in Dutch. Questions and answers are 

available to check the knowledge of each chapter (report KD 196, ref. 9.11). 
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1.2  The wind turbine 
 

In this publication horizontal axis wind turbines for electricity generation are discussed. 

The rotor of the wind turbine is generally coupled to the generator by a transmission 

system (see fig. 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1  The wind turbine 

 

The rotor generates a torque Q on the rotor shaft with an angular velocity . The power 

transmitted by the rotor shaft is given by: 

 

P = Q *       (W) ( 1.1) 

 

The electrical generator power Pel is less than the rotor power because of the efficiency 

of the transmission tr and the efficiency of the generatorgen . So Pel is given by: 

 

Pel = tr * gen  * P      (W) ( 1.2) 

 

A very important parameter for the windmill characteristic is the tip speed ratio  being 

the ratio between the tip speed Vtip and the undisturbed wind speed V. So  is given by: 

 

 = Vtip  / V     (-) ( 1.3) 

 

The tip speed Vtip for a rotor with radius R is given by: 

 

Vtip =  * R      (m/s) ( 1.4) 

 

Combining formula 1.4 and 1.3 we get: 

 

 =  * R / V     (-) ( 1.5) 

 

More specific formulas for P and Q are given in chapter 4. 

generator 

Pel 


transmission Q 

rotor 
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2  Energy and power of the wind 

 

The kinetic energy of a moving body with mass m and speed V is given by:  

 

E = ½ m V2     (Ws) ( 2.1) 

 

With air flow, it is conventional to consider the energy of a mass flow per second m 

passing through a certain area A (see fig. 2.1).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1  Mass flow through area A 

 

With m = m / t formula 2.1 can be rewritten as: 

 

E = ½ m * t * V2       (Ws) ( 2.2) 

 

The mass flow per second through area A is given by: 

 

m = V * A *         (kg/s) ( 2.3) 

 

The density  of air is about 1.2 kg/m3 at a temperature of 20° Celsius at sea level. 

 

Combining formula 2.3 and 2.2 we get:  

 

E = ½V3 * A * t         (Ws)                                   ( 2.4) 

 

Power is the energy per second and is found by dividing E by the time t. 

 

So the power Pw of the undisturbed wind is given by:  

 

Pw = ½V3 * A        (W)                                                                       ( 2.5) 

 

If we take as an example for A, a circle with a radius R = 1 m, and if the wind speed is 

V = 5 m/s it can be calculated that Pw = 235.6 W. Not all this power can be extracted 

from the wind by a wind turbine. In chapter 4.2 and 4.3 this will be explained in more 

detail. 

m 

A 
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3  Lift and drag on aerofoils 

 

A horizontal axis wind turbine extracts energy from the wind by making use of the lift 

force acting on the rotor blade. A rotor blade is usually shaped like an aerodynamic 

aerofoil and therefore some general information about aerofoils is relevant. 

 First we consider an aerofoil which is not rotating but more like an aerofoil as it is 

tested in a wind tunnel or in flight. The air flow over the aerofoil causes a large negative 

pressure on the convex upper side of the aerofoil and a positive pressure on the flat 

lower side of the aerofoil. This pressure difference causes two different resulting forces 

being the lift L and the drag D. The lift is defined as the force perpendicular to the 

direction of the wind W and the drag is the force in the direction of the wind. There is 

also a moment M which is normally centred around a point which lies ¼ of the chord 

back from the leading edge (see fig. 3.1). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1  Lift, drag and moment acting on an aerofoil 

 

The position of the aerofoil is defined by the angle of attack  which is the angle 

between the direction of the wind W and the zero-line of the aerofoil. The zero-line is 

generally defined as the line through the leading edge and the tailing edge but for some 

aerofoils the flat lower side is taken as zero-line. 

 An aerofoil has a certain chord c and a certain length b. The thickness for a certain 

chord in combination with the shape determines the type of aerofoil. The ratio b / c is 

labelled the aspect ratio. If an aerofoil is tested in a wind tunnel generally it has a length 

identical to the width of the measuring section of the wind tunnel. The aspect ratio for 

this situation is effectively infinitive because the wind tunnel walls prevent tip effects. 

 



W 

L 

D 

M 

c zero-line 
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Lift and drag can be measured for a constant wind speed as a function of the angle of 

attack . The lift coefficient Cl and the drag coefficient Cd are given by: 

 

                 L 

Cl = -----------------      (-) ( 3.1) 

        ½ W2 * c * b 

 

 

                 D 

Cd = -----------------      (-) ( 3.2) 

        ½ W2 * c * b 

 

The moment coefficient Cm0.25 around the quarter chord point is given by: 

 

                       M 

Cm0.25 = -----------------      (-) ( 3.3) 

              ½ W2 * c2 * b 

 

Generally the direction of the moment is taken as clockwise (nose-up). The moment 

coefficient itself is negative and near constant for small angles . So the moment has a 

tendency to decrease the angle of attack. 

 In aerofoil books such as (ref. 9.3), the coefficients Cl, Cd and Cm0.25 are given in 

graphs as a function of . Sometimes Cl is provided as a function of Cd. Sometimes the 

results are given in tables. For the rotor design procedure described in chapter 5, one 

needs only a Cl- curve and a Cl-Cd curve. These curves are given for the Gö 623 

aerofoil in section 5.5. 

 

The aerodynamic characteristics depend on the Reynolds number Re which is given by: 

 

Re = W * c /        (-) ( 3.4) 

 

 is the kinematic viscosity of air which is about 15 * 10-6 (m2/s). Normally 

aerodynamic characteristics, for a certain aerofoil, are given for a range of Reynolds 

numbers. Small windmills operate at rather low Reynolds numbers. Most aerofoils have 

been measured at rather high Reynolds numbers because they are used for aeroplane 

wings which have large chords and fly at high speeds. 
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If an aerofoil is rotating, as in the case for a windmill blade, the situation is different 

from an aerofoil tested in a wind tunnel. The situation is given in fig. 3.2 for a small 

blade section with length r taken near the blade tip.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2  Lift and drag forces L and D acting on a rotating blade section 

 

The local blade speed U near the blade tip is much larger than the absolute wind speed 

at the rotor plane (see fig. 4.4). The relative wind W therefore makes a large angle with 

the direction of the absolute wind speed and a small angle with the rotor plane which is 

the plane perpendicular to the rotor shaft in which the blades rotate. The angle between 

the relative wind W and the rotor plane is labelled . The angle between the zero-line of 

the aerofoil and the rotor plane is the blade setting angle . The angle  is equivalent to 

the angle used in the wind tunnel tests. It can be seen that  =  - . 







W 

L 

D 

rotor plane 
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4 Power extraction from the wind 

 

4.1  The rotor formulas 

 

Formula 2.5 gives the power available in the undisturbed wind. The power extracted 

from the wind by a wind turbine is given by: 

 

P = Cp * ½ V3 * R2       (W) ( 4.1) 

 

R2  is the rotor area Ar swept by the rotor blades. The maximum Cp value for a well 

designed rotor lies between 0.4 and 0.45.  

Combining formula 4.1 and 1.2: Pel = tr * gen  * P, we get: 

 

Pel = Cp * tr * gen * ½ V3 * R2       (W) ( 4.2) 

 

The torque Q is given by: 

 

Q = Cq * ½ V2 * R3       (Nm) ( 4.3) 

 

The tip speed ratio  is given by formula 1.5 as  =  * R / V. Formula 1.1 can be 

written as  = P / Q.  

Combining formula 1.5 and 1.1 we get: 

 

       P * R 

 = --------      (-) ( 4.4) 

       Q * V 

 

Combining formula 4.4, 4.3 and 4.1 we get: 

 

 = Cp / Cq      (-) ( 4.5) 

 

The optimum tip speed ratio of a rotor optis the tip speed ratio where the power 

coefficient Cp has a maximum. The corresponding value for Cq is labelled Cq opt. The 

best way to determine opt is to measure a scale model of the rotor in the wind tunnel at 

the correct Reynolds number. The design tip speed ratio of a rotor d is the tip speed 

ratio for which the rotor is designed. If the correct design procedure is used, and if the 

rotor is made accurately, opt and d will be about the same. In most literature is used 

for opt and d. The actual tip speed ratio  of a rotor at a certain wind speed depends on 

the load. More information about Cp- curves is given in chapter 6. opt is a function of 

rotor design. Slow running multi-bladed rotors used for water pumping windmills have 

opt between 1 and 2. Old fashioned Dutch windmills used for grain milling have four 

bladed rotors with opt of about 2.5. Fast running wind turbines used for the generation 

of electricity have two or three bladed rotors with opt between 4 and 10.  

 For  = opt , Cp = Cp max and Cq = Cq opt, formula 4.5 changes into: 

 

opt = Cp max / Cq opt      (-) ( 4.6) 
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The angular velocity is given by: 

 

= * n / 30       (rad/s)        (n is the rotational speed in rpm) ( 4.7)  

 

Combining formula 4.7 and 1.5 we get:  

 

n= 30 *  * V  / R           (rpm) ( 4.8) 

 

4.2  The Betz coefficient  

 

Not all the kinetic energy can be extracted from the wind because this would result in 

the reduction of the wind speed to zero and this implies that no air is flowing through 

the rotor area. It was Betz who developed a theory in 1926 which gives the absolute 

maximum value for Cp. 

 The pressure just before the windmill rotor is somewhat higher than the pressure 

just behind the rotor if the rotor extracts energy from of the wind. This pressure 

difference forms a resistance to the air flowing through the rotor. Therefore the wind 

has a tendency to flow around the rotor instead of through it.  

 The air particles flowing through the rotor form a stream-tube. This stream-tube is 

bounded by air particles which just touch the blade tip. The distance between the stream 

line of these particles and the rotor axis increases as a particle is followed from a 

position far upstream from the rotor up to a position far downstream. This means that 

the stream-tube is expanding. The shape of the stream-tube is illustrated in fig. 4.1. 

Theoretically far upstream and far downstream the rotor means at an infinite distance 

from the rotor but in practice a distance of about three rotor diameters is enough to 

describe the principle.  

 The cross sectional area of the stream-tube far in front of the rotor is labelled A1. 

The swept area of the rotor is labelled Ar. The cross sectional area of the stream-tube far 

behind the rotor is labelled A2. At A1 the wind speed is undisturbed. This undisturbed 

wind speed is labelled V. Betz showed that maximum power is extracted from the wind 

if the wind speed at Ar is 2/3 V and if the wind speed at A2 is 1/3 V. If the air is 

considered incompressible, the product of the wind speed and the area must be constant 

so: 

 

A1 * V = Ar * 2/3 V = A2 * 1/3 V.  (4.9) 

 

This results in A1 = 2/3 Ar and A2 = 2 Ar . 
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Fig. 4.1  Stream-tube of the air flowing through a windmill rotor 

 

Betz used momentum theory and considered the windmill rotor as a so-called actuator 

disk. This is simply a mechanism which extracts energy from the wind. It needs not 

necessarily to be a rotating windmill rotor with blades.  

 

The maximum power Pmax, which the rotor can extract from the wind if all losses are 

neglected, is the power at A1 minus the power at A2.  

Combining formula 2.5: Pw = ½V3 * A and A1 = 2/3 Ar and A2 = 2 Ar we get: 

 

Pmax = ½V3 * 2/3 Ar - ½(1/3V)3 * 2 Ar or 

 

Pmax = 16/27 * ½V3 * Ar          (W) ( 4.10) 

 

The power available in the undisturbed wind at Ar is given by formula 2.5 as: 

Pw = ½V3 * Ar. 

 

The ratio between the maximum power which can be extracted from the wind at Ar and 

the power in the undisturbed wind at Ar (no rotor in place), is called the Betz 

coefficient. Combining formula 4.10 and 2.5 we get:  

 

Betz coefficient = Pmax / Pw = 16/27 = 0.59      (-) ( 4.11) 

 

The Betz coefficient is not equal to the aerodynamic efficiency of the energy 

transformation. For the aerodynamic efficiency, the whole stream-tube has to be taken 

into account. So the generated power should not be compared to the power flowing 

through the plane Ar but to the power flowing through the plane A1. As A1 is 2/3 of Ar, 

the maximum aerodynamic efficiency is a factor 3/2 larger than the maximum Cp and so 

it is 3/2 * 16/27 = 8/9. 

A1 
Ar 

A2 
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The pressure difference over the rotor area results in a resulting thrust force Ft acting on 

the centre of the rotor. Ft is given by: 

 

Ft = Ct * ½  V2 * R2       (N) ( 4.12) 

 

Betz found that Ct = 8/9 if the wind speed at the rotor plane is reduced to 2/3 V. For a 

real windmill Ct generally is somewhat lower than the Betz value. For the rotor of the 

VIRYA-3.3 windmill, which is used in the examples, Ct is about 0.7 for  = opt. If the 

rotor is running unloaded, so for  = unl, Ct is about the same. Ct is much lower if the 

rotor is not running, that is  = 0. For this condition Ct is determined by the combined 

drag on all the blades. Ct for  = 0 is much lower for rotors with a high opt than for 

rotors with a low opt because rotors with a high opt have a much lower total blade area 

(see chapter 5). 
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4.3  Reasons why the maximum Cp is lower than the Betz coefficient 

 

The maximum power coefficient Cp max of a real windmill rotor is smaller than the Betz 

coefficient because of four effects: wake rotation, finite number of blades, profile drag 

and an effective blade length k which is shorter than R. The last effect is given by 

formula 6.3. 

 

4.3.1  Wake rotation 

 

The power P of a windmill rotor is given by formula 1.1: P = Q * . 

 

Two rotors with the same diameter but with different opt can generate about the same 

power at the same wind speed. However the torque of the rotor with the lowest opt must 

be higher since is lower. As the wind exerts a torque on the rotor, the rotor will exert 

a torque on the wind in the opposite direction. This torque results in rotation of the wake 

in and behind the rotor. This wake rotation absorbs some power resulting in a decrease 

in Cp. This decrease in Cp, which was described by Glauert in 1935, is greater for low 

opt. This effect is shown in fig. 4.2. This figure is made from table 1.1 of (ref. 9.1). The 

ideal Cp value for B =  and Cd/Cl = 0 is labelled Cp id . 
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C
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Fig. 4.2  Effect of wake rotation on Cp as a function of opt for B =  and Cd/Cl = 0 

 

4.3.2  Finite number of blades 

 

In the Betz theory an actuator disk replaces the rotor. A real rotor has a finite number of 

blades and each blade has an aerodynamic shape (see fig. 3.2). The air flow over the 

aerofoil causes a large negative pressure on the convex upper side and a positive 

pressure on the flat lower side. This pressure difference cannot be maintained at the 

blade tip because air will flow from the lower side to the upper side. This causes tip 

losses which are more important with less rotor blades. The influence of the number of 

blades on Cp as a function of opt for Cd/Cl = 0 is given in fig. 4.3. 
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Fig. 4.3  Cp as a function of the number of blades B and opt for Cd/Cl = 0 

 

4.3.3  Profile drag 

 

In fig. 3.2 the position of the blade aerofoil was given as near the blade tip. The 

direction of U, W and the absolute wind speed is illustrated in the speed diagram in 

fig. 4.4. The wake rotation is neglected and the absolute wind speed 2/3 V therefore can 

be drawn perpendicular to the rotor plane. 
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The lift force L and the drag force D for the blade section with length r have also 

been shown in fig. 4.4. Both forces can be resolved into components in the rotor plane 

and components perpendicular to the rotor plane. The resulting force Fu, acting on the 

chosen section in the direction of U, is given by: 

 

Fu = L sin- D cos        (N) ( 4.13) 

 

The product Fu * U is the Power Pu produced by the blade section. The sum of Pu of 

all blade sections of all blades is the total power P of the rotor as given by formula 4.1. 

Formula 4.13 shows that drag has a negative influence on the power and therefore on 

Cp. The effect of the drag is often represented by the Cd/Cl ratio instead of by the 

difference between the lift and drag components.  

 

The thrust force T, acting on the chosen section perpendicular to the rotor plane, is 

given by: 

 

T = L cos+ D sin        (N) ( 4.14) 

 

So both lift and drag contribute to the thrust. The sum of T for all blade sections of all 

the blades is the total thrust Ft as given in formula 4.12. 

 

The influence of the Cd/Cl value on Cp as a function of opt is given in figures 4.5 to 

4.11 for number of blades B between 1 and 12. This value of Cp is labelled Cp th because 

it is only achieved if the blade has an aerofoil from the blade tip right to the hub centre 

and if the Cd/Cl value is achieved along the whole blade. In reality the aerofoil begins 

only at a certain distance from the hub centre and this causes a reduction in Cp th. The 

reduced value is labelled Cp max (see section 6.2). 

Figures 4.5 to 4.11 are taken from (ref. 9.2). The theory to derive these figures is given 

in (ref. 9.1). The required formulas to derive these seven figures, and fig. 4.3, are: 

 

Cp = (Cp id –16/27 * Cd/Cl * opt) (1 – 1.386/B * sin½)2       (-) ( 4.15) 

 

 = 2/3 arctan 1 / opt          (°) ( 4.16) 

 

The Cp th -  curves presented in fig. 4.5 to 4.11 are not Cp- curves (see chapter 6) for a 

specific windmill rotor. They show the maximum Cp which can be realised for a certain 

combination of B, opt and Cd/Cl. The Cp- curve of the rotor touches the Cp th -  curve 

for a certain Cd/Cl  value close to the top of the Cp- curve. 
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Fig. 4.5  Cp th as a function of opt and the Cd/Cl value for a 1-bladed rotor 
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Fig. 4.7  Cp th as a function of opt and the Cd/Cl value for a 3-bladed rotor 
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Fig. 4.9  Cp th as a function of opt and the Cd/Cl value for a 6-bladed rotor 
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5  Rotor design 

 

5.1  General 
 

This chapter is a based on chapter 5 of Rotor Design part 2 (ref. 9.5). All rotors of the 

former CWD windmills, all rotors of the VIRYA windmills of Kragten Design and 

many other rotors have been designed according to the formulas given in this chapter. 

Wind tunnel measurements on many scale model rotors of the CWD windmills have 

demonstrated that rotors are obtained with good performance.  

 The original theory was derived by Glauert in 1935. He combined the momentum 

theory with the blade element theory which describes the forces on the individual 

blades. It is beyond the scope of this report to go deeply into the theory. Only a 

simplified derivation for the angle  will be given, because it gives important insights, 

and it can be used to derive the formula for the local Reynolds number.  

 The described method results in a blade geometry which is optimal, or near 

optimal, in terms of the Cp that can be expected. It does not mean that the designed 

blade is strong enough or that it is stiff enough to prevent aerodynamic instabilities, 

such as flutter. Also the starting torque is not a design parameter. It depends on the Cq- 

curve of the rotor and the load characteristic if a certain rotor can be coupled to a certain 

load. Chapters 6 and 8 give more information on this subject. 

 

5.2  Rotor parameters 

 

The rotor geometry is determined by the following parameters: 

 

Rotor tip radius R 

Number of blades B 

Design tip speed ratio d 

Blade aerofoil as a function of the local radius r 

Blade chord c as a function of the local radius r 

Blade setting angle  as a function of the local radius r 

 

Rotor tip radius R 

 

The rotor tip radius R is half the rotor diameter D. The electrical power Pel is given by 

formula 4.2 being: Pel = Cptr * gen * ½V3 * R2 .       

Cp, tr and gen are not constant factors but depend very much on the matching between 

rotor and generator (see chapter 8). Cp decreases rapidly above the wind speed where 

the safety system starts to limit the rotor speed. tr generally decreases with decreasing 

power. If the generator is used for battery charging the voltage is nearly constant. For 

this condition gen decreases at increasing power, mainly because of the copper losses in 

the generator windings. All these effects determine the Pel-V curve (see section 8.3 

point 11) which will be unique for a certain combination of rotor, transmission, 

generator and safety system.  

 The energy generated in a certain period, e.g. a year, depends on the Pel-V curve 

and on the wind speed distribution for the site where the windmill is placed (see chapter 

8.3 point 12). Therefore it is not possible to determine the required rotor tip radius R 

simply from the required energy production per year. What can be done to get some 

insight is to calculate Pel for a relatively low wind speed for which it is expected that 

Cptr and gen are still reasonable. 
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As an example Pel is calculated for: Cp = 0.4, tr = 0.95, gen = 0.65,  = 1.2 kg/m3, 

V = 5 m/s and R = 1.65 m, using formula 4.2. The result is that Pel = 158 W. R has been 

chosen to be the same as in the examples in sections 5.4, 6.5 and 8.4 and the result of 

this rough estimation of Pel therefore can be compared with the real Pel-V curve given in 

fig. 8.4. If the result of the calculation seems to be too high or too low compared with 

needs one may change R and repeat the calculation. Formula 4.2 may also be written 

such that R is found as a function of Pel.  

 So a certain provisional tip radius R can be found. However the availability of 

materials, machines, money and craftsmanship can also determine or limit the 

maximum value of R. In practice a certain tip radius R is first chosen in combination 

with the other design parameters, the generator and the safety system. The Pel -V curve 

for this combination is then determined. For the calculation of the rotor geometry, it is 

assumed that the rotor tip radius R has been decided. 

 

Number of blades B 

 

There is no exact rule to determine the number of blades B. Generally B decreases as 

the design tip speed ratio d increases. Table 5.1 can be used to make an initial estimate. 

 

 

d B 

1 12-36 

1.5 6-18 

2 4-12 

3 3-6 

4 2-4 

5-8 2-3 

8-15 1-2 

 

table 5.1  Number of blades B as a function of d 

 

If one looks at formula 5.4 with which the chord is calculated one can see that the 

product of the chord c and the number of blades B must have a certain value. This 

means that one can take for instance three blades which have a certain chord at a certain 

radius or six blades with just half the chord at that radius. The following arguments may 

be of help to make a choice: 

 

1  As the number of blades increases, the so called tip losses decrease and therefore 

the Cp increases with an increasing number of blades. In fig. 4.3 the effect of the 

number of blades on Cp has been given for Cd/Cl = 0. However the difference is 

only large between a one bladed and a two bladed rotor. The difference between a 

three bladed and a six bladed rotor is almost negligible. 

 

2  If few blades are chosen the blade chord becomes large and therefore a relative 

large local Reynolds number is obtained (see formula 5.5). The minimum Cd/Cl 

values are lower for aerofoils at high rather than at low Reynolds numbers (see 

section 5.5) and therefore higher Cp values can be expected. 
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 This means that Cp increases for increasing chord. The result may be that the 

negative influence of less blades in terms of more tip losses is compensated by the 

positive influence of a higher Reynolds number. 

 

3 If one compares, for instance, a three bladed rotor with a certain chord with a six 

bladed rotor with half the chord, both having the same aerofoil, the aerofoil 

thickness of the six bladed rotor is also half the thickness of the three bladed one. 

This means that the individual blade mass (for solid blades) of the six bladed rotor 

is only one quarter of the blade mass of the three bladed one. The total blade mass 

of the six bladed rotor is half the total blade mass of the three bladed rotor. 

However the strength of a blade of the six bladed rotor is only one eighth of that of 

the three bladed rotor. The bending and torsion stiffnesses are only one sixteenth. 

The bending and torsion stiffness are important factors which determine flutter, 

which is an aerodynamic instability, and therefore the blade chord should not be too 

small with respect to the blade length. This is one reason why fast running rotors 

with a low product of c * B have only two or three blades. 

 

4  Slow running rotors with a high product of c * B normally have many blades. If 

only a few blades were used, the blade chord becomes very large and this, in 

combination with the required space between rotor and tower, results in a large 

moment of the rotor side force around the tower centre. This may cause an 

instability of the safety system. 

 

5  The gyroscopic moment in the rotor shaft, which is determined by the product of 

the rotor angular velocity, the yawing angular velocity and the moment of inertia of 

the rotor, fluctuates sinusoidally for one and two bladed rotors but does not 

fluctuate for three and more bladed rotors. Therefore one and two bladed rotors can 

only be used if they have a slow yawing system or if the blades are connected 

elastic to the hub. Windmills which are kept facing the wind by vanes, or which 

have a safety system which turns the head out of the wind, should preferably have 

three or more blades. 

 

Design tip speed ratio d 

 

Some arguments for the choice of the design tip speed ratio d have already been given 

in section 4.3. Generally a high d is chosen if the rotor is to be coupled to a generator 

because this reduces the gear ratio needed. However the noise generation increases 

strongly with increasing d. A low d is required if the load has a high starting torque 

like as in the case of a grinding mill or a piston pump. The starting torque coefficient of 

the rotor increases strongly with decreasing d. 

 

Blade aerofoil as a function of the local radius r 

 

The blade aerofoil can be constant or it can vary as a function of the local radius. For 

fast running rotors often thin aerofoils are used at the blade tip, because they have low 

drag/lift ratios. Thicker aerofoils are used at the blade root, because of the required 

bending strength. But rotors with one type of aerofoil and even with a constant chord 

are designed and the required strength is achieved by other means.  
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Slow running rotors generally are equipped with curved “flat” plates as aerofoils. The 

shape may change because of the structure which supports the blade. All the former 

CWD rotors, used for water pumping, with opt between 1.5 and 2 used as an aerofoil a 

ten percent curved plate with tube along the centre. This aerofoil has a minimum Cd/Cl 

ratio of about 0.07 which is adequate for rotors with a low opt (see section 4.3.3). 

Rotors with a higher opt need aerofoils with a lower minimum Cd/Cl ratio.  

 Really low Cd/Cl values can only be obtained from freely supported curved plate 

aerofoils with limited curvature or from real aerodynamic aerofoils. It is beyond the 

scope of this report to evaluate different aerodynamic aerofoils. In (ref. 9.3) many 

aerofoils are presented. For solid wooden blades the aerofoil Gö 623 has good 

properties and because it has a flat lower side it can more easily be manufactured. The 

characteristics for this aerofoil are given in section 5.5. 

 

5.3  Determination of the blade geometry  

 

It is assumed that the rotor tip radius R, the number of blades B, the design tip speed 

ratio d and the aerofoil shape have already been chosen. Only five simple formulas 

together with the Cl- and Cl-Cd curves of the chosen aerofoil are required for the 

calculation of the blade chord c and the blade setting angle  as a function of the local 

radius r. These formulas are: 

 

Local design speed ratio r d 

 

r d = d * r / R       (-) ( 5.1) 

 

Blade setting angle 
 

 =  -         (°) ( 5.2) 

 

Angle  between the direction of the relative wind W and the rotor plane 

 

 = 2/3 arctan 1 / r d        (°) ( 5.3) 

 

Chord c 

 

       8  r (1 - cos) 

c = -------------------         (m) ( 5.4) 

              B * Cl 

 

Local Reynolds number Re r 

 

Re r = 0.667 * 105 * V * c *  (r d
2 + 4/9)        (-) ( 5.5) 

 

Formula 5.2 has already been derived in chapter 3 (see fig. 3.2). Derivation of formulas 

5.3 and 5.4 is beyond the scope of this report. Derivation of these formulas may be 

found for instance in report R 1005 A (ref. 9.8).  
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If the rotation of the wake in the rotor plane is neglected, it is easy to derive a formula 

for  which differs only slightly from formula 5.3. This derivation gives a good insight 

into the rotor physics and it is also useful for the derivation of formula 5.5. Next 

formulas 5.1, 5.3 and 5.5 are elucidated. 

 

Formula 5.1 

 

The tip speed ratio  is given by formula 1.5. being: =  * R / V. The local blade 

speed is  * r, so the local speed ratio r can be written as: 

 

r =  * r / V      (-) ( 5.6) 

 

Combining formula 5.6 and 1.5 we get: 

 

r =  * r / R       (-) ( 5.7) 

 

The design tip speed ratio d is the tip speed where the power coefficient is expected to 

be a maximum. The blade geometry is calculated for d so if we take  = d and 

r = r d, formula 5.7 changes into:  

 

r d = d * r / R       (-) ( 5.1). 

 

Formula 5.3 

 

If the wake rotation in the rotor plane is neglected the direction of the absolute wind 

speed is perpendicular to the rotor plane. For extraction of the maximum power, Betz 

derived that the wind speed in the rotor plane must be 2/3 of the undisturbed wind speed 

V (see section 4.2). The local blade speed U at a certain radius r is  * r. This results in 

the speed diagram of fig. 5.1. 
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It can be seen that: 

 

tan  = 2/3 V /  * r         (-) ( 5.8) 

 

Combining formula 5.8 and 5.6 and r = r d we get: 

 

 = arctan 2/3 / r d       (°) ( 5.9) 

 

The difference between this simplified formula 5.9 and the correct formula 5.3 is that 

the factor 2/3 is behind the arctan. In fig. 5.2 the curves of both formulas have been 

plotted. It can be seen that the difference for r d > 2 is negligible. The simplified 

formula gives too large a value for the angle  only for small values of r d. 
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In (ref. 9.1) the relation between  and r d was derived as: 

 

               sin (2cos- 1) 

r d = ---------------------------          (-) ( 5.10) 

           (1 - cos) (2cos+ 1) 
 

It can be shown that formula 5.10 is identical to formula 5.3 which is much more simple 

to use and in which  is given explicitly. 
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Formula 5.5 

 

The Reynolds number Re is given in formula 3.4 as: Re = W * c /  

 

Because the wake rotation is neglected, fig. 5.1 is not quite correct, especially for low 

values of r, but it is good enough for deriving a formula for the local Reynolds number 

Re r. Using the formula of Pythagoras in fig. 5.1 gives: 

 

W =  ( * r)2 + (2/3 V)2      (m/s) ( 5.11) 

 

Combining formula 5.11 and 5.6 and r = r d we get: 

 

W = V *  (r d
2 + 4/9)       (m/s) ( 5.12) 

 

Combining formula 5.12 and 3.4: Re = W * c / , we get for the local radius r that: 

 

Re r = V * c/ *  (r d
2 + 4/9)       (-) ( 5.13) 

 

The kinematic viscosity for air it is about 15 * 10-6 (m2/s). Substitution of this value in 

formula 5.13 gives: 

 

Re r = 0.667 * 105 * V * c *  (r d
2 + 4/9)       (-) ( 5.5) 

 

An appropriate wind speed V for use in this formula is the lowest wind speed for which 

the rotor must have good properties. Generally this will be 4 or 5 m/s. 

 

For the calculation of the blade geometry a certain number of stations must be taken 

along the blade and for each station c and  are calculated. The distance between the 

stations should be smaller at the blade root than at the blade tip. Assuming that the blade 

aerofoil ends at about 0.1 R, a good first choice is to take seven stations A to G as 

illustrated in fig. 5.3. 

 Next it is easy to construct a table in which all the calculated parameters for the 

different stations are given (see tables 5.2 and 5.3). The sequence of the theoretical 

values indicated with th in the table matches the sequence of the calculation. The 

linearised values indicated with lin are calculated afterwards.  

 If one starts with the geometry calculation for a certain rotor it is easy first to 

substitute the chosen values for R, d, B and Cl or c in formulas 5.1 to 5.5 and to work 

with these simpler formulas. The final geometry depends on the chosen aerofoil, the lift 

coefficient and the linearisation of the chord and the twist. These items will be 

elucidated in the examples in section 5.4. 
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5.4  Examples of rotor design 

 

Both examples given in this chapter concern fast running rotors for the generation of 

electricity. In the first example the lift coefficient is taken as a constant over the whole 

blade and it has a value for which the drag-lift ratio Cd/Cl is a minimum. If Cd/Cl is 

minimised, the highest Cp max can be expected. In the second example the blade chord c 

has been kept constant. Although this blade will have a somewhat lower Cp max it is 

much easier to manufacture especially if solid wood is used as the blade material. All 

other design parameters are the same for both examples.  

 The blade geometry of example no. 2 is identical to the blade geometry of the 

VIRYA-3.3, a windmill designed by Kragten Design in 1991. 

 

5.4.1  Example no. 1 

 

Initial parameters: 

diameter D = 3.3 m so R = 1.65 m 

number of blades B = 3 

design tip speed ratio d = 5 

aerofoil Gö 623 (see section 5.5) 

Cd/Cl is a minimum so take Cl = Cl opt = 0.8 

Re r is calculated for V = 4 m/s 

blade length k = 1.5 m 

 

Formula 5.1 with R = 1.65 m and d = 5 gives: 

 

r d = 3.0303 * r        (-) ( 5.14) 

 

Formula 5.4 with B = 3 and Cl = 0.8 (see determination below) gives: 

 

c = 10.472 * r (1 - cos)         (m) ( 5.15) 

 

Formula 5.5 with V = 4 m/s gives: 

 

Re r = 2.667 * 105 * c *  (r d
2 + 4/9)       (-) ( 5.16) 

 

Formula 5.2:  =  - and formula 5.3:  = 2/3 arctan 1 / r d stay unchanged. 

 

The optimum lift coefficient Cl opt is found as follows. For the Gö 623 aerofoil Cl-Cd 

curves for three different Reynolds numbers are available (see fig. 5.9). The optimum 

lift coefficient is determined for each Reynolds number. We find the optimal Cl value 

there where a straight line through the origin touches the Cl-Cd curve. For 

Re = 1.2 * 105, this gives a Cl of about 0.8. Also for Re = 2.3 * 105 and Re = 4.2 * 105 we 

find an optimal Cl of about 0.8. In fig. 5.8 we see that the corresponding values for  are 

respectively 3.5°, 3.2° and 2.9° for Cl = 0.8. We choose Cl = 0.8 to determine formula 

5.15 and later we check if the real Reynolds numbers match with the range of available 

curves.  

 The minimum Cd/Cl ratio is the reverse tangent of a line through the origin touching 

the Cl-Cd curve. The minimum Cd/Cl ratio can be found easily for the point of 

intersection with the horizontal line Cl = 1. The Cd value for this point of intersection is 

the Cd/Cl ratio for the tangent through the origin, so for the optimum Cl value.  
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For Re = 1.2 * 105 the minimum Cd/Cl ratio is 0.034.  

For Re = 2.3 * 105 the minimum Cd/Cl ratio is 0.027.  

For Re = 4.2 * 105 the minimum Cd/Cl ratio is 0.020. 

 

The stations for which the blade geometry is calculated are shown in fig. 5.3. The 

results of the calculations are presented in table 5.2. For Cl, c, ,  and Cd/Cl two values 

are given. The first one is the theoretical value according to the calculation. The second 

one is obtained after linearisation of the chord which is often done to facilitate 

manufacture. Linearisation of the twist is required for blades made out of curved sheet, 

because large stresses are introduced if a curved sheet is twisted non-linear. The first 

value for Reynolds is the calculated value for the chosen wind speed. The second value 

for Reynolds is the value for the nearest curve for which data are available.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3  Stations for which the blade geometry is calculated 
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cth 

(m) 
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Re 
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Gö623 

th 

(°) 

lin 

(°) 

th 

(°) 

lin 

(°) 

Cd/Cl th 

(-) 

Cd/Cl lin 

(-) 

A 1.65 5 7.5 0.8 0.99 0.149 0.120 2.00 2.3 3.2 5.6 4.3 3.2 0.028 0.030 

B 1.35 4.091 9.2 0.8 0.80 0.180 0.180 1.99 2.3 3.2 3.2 6.0 6.0 0.028 0.028 

C 1.05 3.182 11.6 0.8 0.70 0.225 0.240 1.95 2.3 3.2 2.1 8.4 9.6 0.028 0.028 

D 0.75 2.273 15.8 0.8 0.79 0.298 0.300 1.88 2.3 3.2 3.1 12.6 12.7 0.028 0.028 

E 0.45 1.364 24.2 0.8 0.92 0.413 0.360 1.67 1.2 3.5 5.0 20.7 19.2 0.035 0.036 

F 0.3 0.909 31.8 0.8 0.97 0.472 0.390 1.42 1.2 3.5 5.7 28.3 26.1 0.035 0.037 

G 0.15 0.455 43.7 0.8 0.83 0.435 0.420 0.94 1.2 3.5 3.8 40.2 39.9 0.035 0.035 

 

table 5.2  Calculated values for a blade designed with an optimal lift coefficient 
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Remarks: For the calculation of the chord the angle  must be taken accurately (three 

figures after the decimal point). For the calculation of , the angle  can be rounded off 

to one figure after the decimal point.  

 If the chord is linearised it has to be done such that the linearised chord at the outer 

part of the blade is as close as possible to the theoretical chord. The c-r curves are 

presented in fig. 5.4 before and after linearisation of the chord. 
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Fig. 5.4  c-r curves before and after linearisation of the chord 

 

If the chord is changed this results in a change of Cl and therefore in changes of ,  

and the Cd/Cl ratio. Formula 5.4 with B = 3 gives: 

 

Cl = 8.378 * (1-cos) * r / c         (-) ( 5.17) 

 

Cl has been recalculated for the linearised chord using formula 5.17. Also ,  and the 

Cd/Cl ratio have been determined for the new Cl values. The recalculated values for a 

linearised chord all have as indication lin. The results are placed in the right hand 

columns of table 5.2. If Cd/Cl lin is compared with Cd/Cl th it can be seen that the 

difference is very small so the influence of linearisation of the chord on Cp max can be 

neglected. The -r curves before and after linearisation of the chord are presented in 

fig. 5.5. Cl lin, lin, lin and Cd/Cl lin out of table 5.2 are given for linearisation of the 

chord only.  

 If  itself is also linearised (dotted line), this results in a blade which is, particularly 

near the blade root, quite different to the design theory. 
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In table 5.2 it can be seen that the average Cd/Cl lin value for the most important part of 

the blade, between stations A and D, is less than 0.03. For stations E to G it is about 

0.036 so still very good and therefore we can take an average Cd/Cl value of 0.03 for the 

whole blade. Fig. 4.7 for B = 3, opt = 5 and Cd/Cl = 0.03 gives Cp th = 0.455. 

Formula 6.3: Cp max = Cp th * (2Rk - k2) / R2 (see chapter 6) with Cp th = 0.455, 

R = 1.65 m and k = 1.5 m gives: Cp max = 0.45. This is very good for a small windmill.  

 

5.4.2  Example no. 2 (VIRYA-3.3 rotor) 

 

For this example the rotor diameter D, the number of blades B, the design tip speed 

ratio d, and the aerofoil have been taken the same as example no. 1 so: 

 

Initial parameters: 

diameter D = 3.3 m so R = 1.65 m 

number of blades B =3 

design tip speed ratio d =5 

aerofoil Gö 623 (see section 5.5) 

chord c = constant 

Re r is calculated for V = 4 m/s 

blade length k = 1.5 m 

 

However the chord is kept constant. A constant chord results in a low lift coefficient at 

the blade tip and a high lift coefficient at the blade root. So the Cd/Cl ratio is not 

optimal, but this is not essential. One can deviate from the optimal Cd/Cl ratio, as used 

in example no. 1, if the Cd/Cl ratio stays below a certain value. If a line is drawn on the 

Cl-Cd graph through the origin and for example the point Cl = 1, Cd = 0.05, all points 

lying on the Cl-Cd curves to the left of this line will have Cd/Cl ratios smaller than 0.05 

(see fig. 5.9). 
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For Re = 1.2 * 105 this is the case for 0.4 < Cl < 1.22. For Re = 2.3 * 105 this is the case 

for 0.29 < Cl < 1.26. If the Cd/Cl ratio is smaller than 0.05 a good Cp can still be 

expected for a three bladed rotor (see fig. 4.7). 

 The outer half of the blade generates approximately 75 % of the power because the 

area swept by this part of the blade is 75 % of the whole rotor area. Therefore it is 

necessary to ensure that this part of the blade functions well and the lift coefficient at 

the blade tip is not too low. A good first choice is Cl = 0.6. With this value the blade 

chord at the tip is calculated using formula 5.3 and formula 5.4 as c = 0.199 m. So let us 

take c = 0.2 m. The Gö 623 aerofoil has a maximum thickness t equal to 12 % of the 

chord so t = 24 mm which seems reasonable. The lift coefficient is now calculated for 

the chosen chord c = 0.2 m. 

 

Formula 5.4 with c = 0.2 m and B = 3 gives: 

 

Cl = 41,888 * r (1 - cos)        (-) ( 5.18) 

 

Formula 5.5 with V = 4 m/s and c = 0.2 m gives: 

 

Re r = 0.5336 * 105 *  (r d
2 + 4/9)           (-) ( 5.19) 

 

Formula 5.2, 5.3 and 5.14 remain unchanged. The stations for which the blade geometry 

is calculated are shown in fig. 5.6. The results of the calculations are presented in 

table 5.3 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6  Stations for which the VIRYA-3.3 blade geometry is calculated 
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sta- 

tion 

r 

(m) 
rd 

(-) 


(°) 

Cl th 

(-) 

Cl lin 

(-) 

clin 

(m) 

Re r 

* 10-5 
V=4m/s 

Re 

* 10-5 
Gö623 

th 

(°) 

lin 

(°) 

th 

(°) 

lin 

(°) 

Cd/Cl th 

(-) 

Cd/Cl lin 

(-) 

A 1.65 5 7.5 0.60 0.56 0.2 2.69 2.3 0.9 0.5 6.6 7.0 0.029 0.030 

B 1.35 4.091 9.2 0.72 0.71 0.2 2.11 2.3 2.3 2.2 6.9 7.0 0.028 0.028 

C 1.05 3.182 11.6 0.90 0.89 0.2 1.73 2.3 4.7 4.6 6.9 7.0 0.036 0.036 

D 0.75 2.273 15.8 1.19 1.15 0.2 1.26 1.2 9.6 8.8 6.2 7.0 0.046 0.044 

E 0.45 1.364 24.2 1.65 0.83 0.2 0.81 1.2 - 17.2 - 7.0 - 0.340 

F 0.3 0.909 31.8 1.89 - 0.2 0.60 1.2 - 24.8 - 7.0 - - 

G 0.15 0.455 43.7 1.74 - 0.2 0.43 1.2 - 36.7 - 7.0 - - 

 

table 5.3  Calculated values for VIRYA-3.3 blade with a constant chord 

 

Remarks: For stations E, F and G, Cl th is higher than the maximum of the Cl- curve, 

so no angle th and therefore no angle th is found. The results of the calculation for 

stations A till D show that the angles th are almost constant because the increase in  at 

decreasing r is about the same as the increase in th. If the angle lin is taken as 7° for 

the whole blade, the angle lin can also be calculated for stations E, F and G. For 

stations F and G no values for Cl lin and Cd/Cl lin are found because the profile Gö 623 

has only been measured up to  = 17.2° for Re = 1.2 * 105. 

 If the angle lin is constant for the whole blade, we get a blade with a constant chord 

and no twist and such a blade can be manufactured easily out of a solid wooden plank. 

The VIRYA-3.3 rotor is therefore easy to manufacture and the required amount of 

material is minimised. The value for Cp max is calculated in section 6.5.  

 

5.5  Characteristics of the Gö 623 aerofoil 

 

The Gö 623 aerofoil characteristics as used in the examples in section 5.4 are derived 

from report R 443 D (ref. 9.3). The original graph for the Gö 623 was very small. Using 

the original data new graphs with a finer grid were made which were published in report 

KD 463 (ref. 9.4). These graphs are presented in fig. 5.8 and fig. 5.9. 

 For the calculation of the starting torque coefficient (see chapter 6.3), Cl- data for 

very large angles  are required but these are not available for the Gö 623. The aerofoil 

shape of the Gö 623 is very similar to the NACA 4412. However the zero-line is 

defined differently for the aerofoils. For the Gö 623 the zero-line is the flat lower side of 

the aerofoil. For the NACA 4412 it is the line which connects the aerofoil leading edge 

with the trailing edge. The difference between these lines is about 2° (see fig. 5.7). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7  Main differences between Gö 623 and NACA 4412 aerofoils 
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For the NACA 4412 aerofoil a Cl- curve is available for -4° <  < 90° and 

Re = 0.95 * 105 (see ref. 9.3). An estimated curve for the Gö 623 for 16° <  < 90° is 

derived from this NACA 4412 curve taking into account that the zero lines differ 2°. 

The result is presented in fig. 5.10.  
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The geometry of the Gö 623 aerofoil for a chord of 100 is given in fig. 5.11. The profile 

looks extremely thick but this is because of the difference in scale between the x-axis 

and the y-axis. This is done to create enough space to place the y-co-ordinates. 

 x is the x-co-ordinate measured from the nose as a percentage of the chord. y1 is 

the co-ordinate of the upper side and y2 is the co-ordinate of the lower side as a 

percentage of the chord. The y-co-ordinates are given from the flat lower side which is 

the zero-line for the Gö 623 aerofoil.  

 Originally y2 = 0.35 for x = 7.5 but in this case there is a bulge in the curve. 

Therefore it has been changed into y2 = 0.45. The maximum thickness of 12 % of the 

chord is reached at x = 30.  

 If the blade is made of wood it is advised to enlarge the aerofoil thickness near the 

tailing edge to make it less prone to damage. The aerofoil can be modified in this case 

by taking y1 = 2.95 for x = 90, y1 = 1.85 for x = 95 and y1 = 0.75 for x =100. The upper 

side of the aerofoil is now straight between x = 70 and x = 100. It is expected that this 

small modification has no influence on the aerofoil characteristics. 
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6  Rotor characteristics  

 

6.1  General 

 

Once the rotor geometry has been determined, one often wants to know what kind of 

Cp- and Cq- curves can be expected. Different computer programs have been  

developed with which this is possible, but they are not generally available and the result 

may differ a lot from wind tunnel tests. One computer programme has been described in 

a TUE report: A numerical method for the determination of the performance of 

windmill rotors, report R 1005 A (In Dutch, ref. 9.8).  

 Making a scale model of the rotor and testing it in a wind tunnel is the best way, if 

it is tested at the correct wind speed. The wind speed should be inversely proportional to 

the scale factor, to obtain the correct Reynolds numbers. However wind tunnels are not 

available everywhere and making a scale model is a lot of work. Therefore a simple 

method is given which results in Cp- and Cq- curves which roughly correspond with 

measured curves. 

 

6.2  Determination of opt, Cp max and unl 

 

Determination of opt 



opt is the tip speed ratio for which one should obtain the maximum Cp. It is assumed 

that this is the case for the design tip speed ratio so opt = d. 

 

Determination of Cp max 

 

For each station the Cd/Cl value has been determined (see examples in section 5.4). 

Because approximately 75 % of the power is generated by the outer half of the blade, 

the average Cd/Cl value for this part of the blade is determined. Next the theoretical 

maximum Cp value Cp th is determined using the curves presented section 4.3.3. The Cp 

value found in this way is too high because it is based on a blade which has the correct 

aerofoil from the centre of the rotor right up to the blade tip. In reality there is a disk in 

the middle of the rotor with radius R - k for which the blade has no aerofoil and which 

therefore generates no power. It is assumed that the real Cp is proportional to the ratio 

between the area Ak swept by a rotor blade with length k and the rotor area Ar (see 

fig. 6.1). 
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Fig. 6.1  Blade with blade length k 

 

The area Ak swept by a blade with length k is given by: 

 

Ak =  (2Rk - k2)         (m2) ( 6.1) 

 

The rotor area Ar is given by: 

 

Ar = R2       (m2) ( 6.2) 

 

So Cp max is given by: 

 

Cp max = Cp th * (2Rk - k2) / R2          (-) ( 6.3) 

 

Determination of unl 

 

For unl a rule of thumb is used: 

 

unl = 8/5 * opt          (-) ( 6.4) 

 

k 

R 
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6.3 Determination of Cq start 

 

For the general determination of the starting torque coefficient Cq start, the blade is 

divided into about six sections (see fig. 6.2). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2  Blade divided into six sections 

 

For each section the average chord c, the average blade setting angle  and the average 

radius r is determined. Next the starting torque is determined for each section and the 

addition of the torques of all the sections multiplied by the number of blades gives the 

theoretical starting torque of the whole rotor. Because of losses at the blade tip and the 

blade root the real starting torque is about 75 % of the calculated torque. 

 If the blade has a constant chord and no twist (as in example no. 2 of section 5.4) 

the whole calculation becomes very simple because only one section having the length 

of the blade is required. The starting torque formulas will be derived for this condition. 

If the blade has a constant chord and a linear twist the same formula can be used but one 

has to take the average blade setting angle, that is the blade setting angle at the middle 

of the blade. Theoretically a small error results but this can be neglected. In fig. 6.3 the 

situation is given for a blade with a constant chord and a constant blade setting angle. 
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Fig. 6.3  Blade with a constant chord and no twist 

 

For the starting condition the blade is not moving so the direction of the relative wind 

W is parallel to the rotor shaft. This means that  = 90° and  = 90° - . Because no 

power is extracted from the wind the relative wind speed W is the same as the 

undisturbed wind speed V. For these conditions the torque is caused only by the lift 

component L (see fig. 6.4). The resulting lift force L on the whole blade acts half way 

along the blade at a radius rm (see fig. 6.3) given by: 

 

rm = R - ½ k       (m) ( 6.5) 

k 

k’ 

0.5 k 

rm 

R 
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Fig. 6.4  Lift and drag on a stationary blade 

 

The lift coefficient Cl is defined by formula 3.1. For W = V and b = k this formula can 

be written as: 

 

L = Cl * ½V2 * c * k        (N) ( 6.6) 

 

During starting the Reynolds number is very low and therefore we have to use the Cl- 

curve with the lowest available Reynolds number to calculate Cl.  

The theoretical starting torque of one blade Qbl th is given by: 

 

Qbl th = rm * L         (Nm) ( 6.7) 

 

The theoretical starting torque of the whole rotor Qrot th is given by: 

 

Qrot th = B * rm * L       (Nm) ( 6.8) 

 

The realistic starting torque Qstart is only 75 % of the theoretical starting torque so Qstart 

is given by: 

 

Qstart = 0.75 * B * rm * L         (Nm) ( 6.9) 

 

Combining formula 6.9, 6.6 and 6.5 we get: 

 

Qstart = 0.75 * B * (R - ½k) * Cl * ½V2 * c * k          (Nm) ( 6.10) 

D L 

W = V 






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The starting torque coefficient Cq start is defined as: 

 

                    Qstart 

Cq start =  -----------------        (-) ( 6.11) 

              ½V2 * R3 

 

Combining formula 6.11 and 6.10 we get: 

 

          0.75 * B * (R - ½k) * Cl * c * k 

Cq start = ---------------------------------------          (-) ( 6.12) 

                             R3 

 

6.4  Determination of the Cp- and Cq - curves 

 

In sections 6.2 and 6.3 it was explained how two points lying on the Cp- curve and one 

point lying on the Cq- curve could be derived. With only these three points both curves 

can be estimated. This is done in four steps. Both curves are related to each other by 

means of formula 4.5:  = Cp / Cq.  

 We start with the two points Cp max, opt andCp = 0, unl, that lie on the Cp- curve. 

Through these two points we draw a parabola which starts at about  = 4/5 opt and 

which has a maximum at opt (see fig. 6.5 black line). We read off the value for Cp for 

about five points on this line. 

 Next, using formula 4.5, we calculate the corresponding Cq values for these five 

points and draw the corresponding part of the Cq-curve through them (see fig. 6.6 

black line). The maximum Cq value normally occurs at about  = 4/5 * opt. The part of 

the Cq-curve between = 6/5 opt and unl should be nearly a straight line. If this part 

of the curve is not a straight line we modify the corresponding part of the Cp- curve 

until it is.  

 Next we take the calculated point for Cq start, = 0 and draw a horizontal line 

through it. Then we draw a S-shaped curve (see fig. 6.6 dotted line) which smoothly 

connects the point of Cq start with the rest of the curve fluently and which touches the 

horizontal line. 

 Next using formula 4.5, we calculate the remaining part of the Cp- curve (see 

fig. 6.5 dotted line) from the dotted part of the Cq- curve and both curves are complete. 

 A more accurate method to determine the first part of the Cq- curve is given in 

report KD 97 (ref. 9.12). This report also contains the method to determine Cq start if the 

blade has no constant chord. 
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6.5  Example of rotor characteristics 

 

The estimated Cp- and Cq- curves will now be derived for the VIRYA-3.3 rotor, the 

same rotor as used in section 5.4.2. The design tip speed ratio d for this rotor is 5. 

Assume opt = d, so opt = 5. The number of blades B = 3. The average Cd/Cl value is 

determined for the stations A to D as the most important part of the blade from 

table 5.3. We find Cd/Cl average = 0.04.  

 Next the theoretical maximum Cp coefficient is determined for a 3-bladed rotor 

using fig. 4.7. Only lines for Cd/Cl = 0.03 and Cd/Cl = 0.05 are available but by 

interpolation we find Cp th = 0.43. The real Cp max can be calculated with formula 6.3. 

The blade length k is 1.5 m. However the whole blade does not have a perfect 

aerodynamic aerofoil. The inner part of the blade, with a length of 0.25 m, is used for 

connection with the hub assembly. Although this hub assembly is positioned at the 

lower side of the aerofoil, it disturbs the aerofoil considerably. The effective length for 

the calculation of Cp max is therefore not k but k’(see fig. 6.3). For the calculation of the 

starting torque coefficient we can use k instead of k’ because during starting the 

complete blade is in stall and then the influence of the hub assembly can be neglected. 

 

Formula 6.3 with Cp th = 0.43, R = 1.65 m and k = k’ = 1.25 m gives: Cp max = 0.4 which 

is a good value for a small windmill.  

 For the rotor designed with an optimum Cd/Cl value, as given in example no. 1 of 

section 5.4.1, we found that Cp max = 0.45 so the difference is not large. However 

manufacture of this first rotor is much more difficult and much more material is 

required. 

 

Formula 6.4 with opt = 5 gives: unl = 8. 

 

Formula 5.2 with  = 90° and  = 7° gives:  = 83°.  

The aerofoil chosen is the Gö 623 and using fig. 5.10 and  = 83° we find Cl = 0.24. 

 

Formula 6.12 with B = 3, R = 1.65 m, k = 1.5 m, Cl = 0.24 and c = 0.2 m gives: 

Cq start = 0.010. 

 

Next the Cp- and Cq- curves are determined as explained in section 6.4. The results 

are presented in fig. 6.7 and fig. 6.8. Note that the scale of the Cp-axis is different from 

the scale of the Cq-axis. 
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Fig. 6.7  Estimated Cp-curve for the VIRYA-3.3 rotor 
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Fig. 6.8  Estimated Cq- curve for the VIRYA-3.3 rotor 
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7  Rotors in yaw 

 

7.1  General 
 

The rotor characteristics as derived in chapter 6 are only valid for a rotor perpendicular 

to the wind. If the rotor is yawing, because of a fluctuating wind direction or because 

the safety system is turning the rotor out of the wind, the rotor characteristics will 

change. To predict how they change as a function of the yaw angle , the effective 

component of the wind must be determined. The undisturbed wind speed before the 

rotor can be resolved into a component Vcos perpendicular to the rotor plane and a 

component Vsin parallel to the rotor plane (see fig. 7.1).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1  Resolving V into components Vcos and Vsin 

 

Wind tunnel measurements indicate that if the component Vcos is used to calculate the 

rotational speed, the thrust, the torque, and the power, only a small mistake is made 

especially in the region around the optimal tip speed ratio. The component Vsin 

however cannot be used to calculate the side force on the rotor. The real side force is 

much higher than according to the calculation with Vsin especially at low values of .  

V 
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7.2  Determination of the yawing formulas 

 

The formulas for n, Ft, Q and P as given in chapter 4 are now modified for yawing by 

using Vcos instead of V. 

 

Formula 4.8 with V = Vcos gives: 

 

n= 30 *  * (Vcos)  / R = 30 *  * cos * V  / R       (rpm) ( 7.1) 

 

Define  as:  = * cos        (-) ( 7.2) 

 

Combining formula 7.2 and 7.1 we get: 

 

n= 30 *  * V  / R       (rpm) ( 7.3) 

 

 

Formula 4.12 with V = Vcos gives: 

 

Ft = Ct * ½ (Vcos)2 * R2 = Ct * cos2 * ½V2 * R2        (N) ( 7.4) 

 

Define Ct  as: Ct  = Ct * cos2        (-) ( 7.5) 

 

Combining formula 7.5 and 7.4 we get: 

 

Ft  = Ct * ½V2 * R2         (N) ( 7.6)

 

 

Formula 4.3 with V = Vcos gives: 

 

Q= Cq * ½ (Vcos)2 * R3 = Cq * cos2 * ½V2 * R3       (Nm) ( 7.7) 

 

Define Cq  as: Cq  = Cq * cos2        (-) ( 7.8) 

 

Combining formula 7.8 and 7.7 we get: 

 

Q = Cq * ½V2 * R3          (Nm) ( 7.9)

 

 

Formula 4.1 with V = Vcos gives: 

 

P= Cp * ½ (Vcos)3 * R2 = Cp * cos3 * ½V3 * R2        (W) ( 7.10) 

 

Define Cp  as: Cp  = Cp * cos3        (-) ( 7.11) 

 

Combining formula 7.11 and 7.10 we get: 

 

P = Cp * ½V3 * R2          (W) ( 7.12)
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7.3  Example of yawing 

 

Formulas 7.2, 7.8 and 7.11 can now be used to derive the Cp - and Cq - curves for 

certain values of . This has been done for the VIRYA-3.3 rotor for which the rotor 

characteristics were given in fig. 6.7 and fig. 6.8. These curves have been produced for 

values of  = 15°, 30°, 45° and 60°. It is easy to start by making a table in which all the 

calculated values are given (see table 7.1). The calculated values, including the values 

for  = 0°, are used for the Cp - and Cq - curves as given in fig. 7.2 and fig. 7.3. 

 

 
 = 0°  = 15°  = 30°  = 45°  = 60° 

 Cq Cp  Cq  Cp   Cq  Cp   Cq  Cp   Cq  Cp  

0 0.01 0 0 0.0093 0 0 0.0075 0 0 0.005 0 0 0.0025 0 

1 0.015 0.015 0.9659 0.0140 0.0135 0.8660 0.0113 0.0097 0.7071 0.0075 0.0053 0.5 0.0038 0.0019 

2 0.04 0.08 1.9319 0.0373 0.0721 1.7321 0.03 0.0520 1.4142 0.02 0.0283 1 0.01 0.01 

3 0.07 0.21 2.8978 0.0653 0.1892 2.5981 0.0525 0.1364 2.1213 0.035 0.0742 1.5 0.0175 0.0262 

4 0.0875 0.35 3.8637 0.0816 0.3154 3.4641 0.0656 0.2273 2.8284 0.0438 0.1237 2 0.0219 0.0438 

5 0.08 0.4 4.8296 0.0746 0.3605 4.3301 0.06 0.2598 3.5355 0.04 0.1414 2.5 0.02 0.05 

6 0.0583 0.35 5.7956 0.0544 0.3154 5.1962 0.0437 0.2273 4.2426 0.0292 0.1237 3 0.0146 0.0438 

7 0.0286 0.2 6.7615 0.0267 0.1802 6.0622 0.0215 0.1299 4.9497 0.0143 0.0707 3.5 0.0072 0.025 

8 0 0 7.7274 0 0 6.9282 0 0 5.6569 0 0 4 0 0 

 

table 7.1  Calculated values for  Cq  and Cp  for the VIRYA-3.3 windmill 
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8  Matching of windmill rotor and generator 

 

8.1  General 
 

The goal of this chapter is to give a compact method to enable the matching of a certain 

windmill rotor and a certain generator. Matching has to do with the extent to which the 

generator characteristic suits with the optimum rotor characteristic. The optimum rotor 

characteristic could be the P-n curve or the Q-n curve (see section 8.3 points 3 and 4) 

for which Cp is maximum. An advantage of using the P-n graph is that the Pel-n curve of 

the generator can be drawn on the same graph. A disadvantage is that the power is very 

low at very low rotational speeds and therefore the starting behaviour cannot be 

observed easily on the P-n graph. For observation of the starting behaviour it is better to 

use Q-n graphs. Both systems will be explained.  

 The generator characteristic can be given as measured Pmech-n or Q-n curves. If 

there is step up gearing between the generator and the windmill rotor, the gear ratio and 

the efficiency of the transmission have to be taken into account. The rotational speed of 

the generator has to be transformed to the rotational speed of the rotor shaft. 

 

8.2  Design parameters 

 

The following design parameters influence the matching between rotor and generator 

 

1 The rotor diameter 

2 The design tip speed ratio 

3 The shape of the Cp- and the Cq- curve 

4 The gear ratio of the transmission 

5 The transmission efficiency 

6 The type of generator, DC or AC  

7 The type of field excitation, electro-magnet or permanent magnet 

8 The generator size 

9 The number of armature poles 

10 The strength of the field density in the air gap 

11 The method of rectification, delta or star (if used) 

12 The number of windings per coil and the way the coils are connected to each other 

 

Points 7 to 12 determine the open voltage at a certain rotational speed. This in 

combination with the battery voltage determines at which rotational speed charging 

starts (it is supposed that the windmill is used for battery charging). 

 

8.3  Matching procedure 

 

1  Determine the rotor diameter D, the design tip speed ratio d and the blade 

geometry. This is described in chapter 5. 

 

2  Determine the Cp- and Cq- curves for the chosen rotor. This could be done by 

using a scale model of the rotor in a wind tunnel. A simplified method for 

estimating these curves is given in chapter 6. About nine points have to be chosen 

on the selected curves and the values for Cp, and Cq for these points are noted in 

a table (see example table 8.1). 
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3  Determination of the P-n curves of the rotor. For a certain low wind speed, e.g. 

V = 3 m/s, the chosen values for  and Cp are substituted in formula 4.1 and 4.8. 

The calculated values for n and P are also placed in the table (see example 

table 8.1). This is repeated for higher wind speeds V = 4, 5, 6 and 7 m/s. If the 

windmill has a safety system which turns the rotor out of the wind above for 

example V = 7 m/s, one has to take this into account for higher wind speeds. In this 

case one has to use formula 7.10 and 7.1. Next the values in the table are plotted as 

a P-n graph (see example fig. 8.3). The line which connects points with the same 

wind speed is the P-n curve for that wind speed. This line has about the same shape 

as the Cp-curve. Points with the same and the same Cp can also be connected. 

This line is a cubic line. The line for Cp = Cp max is the optimal cubic line for the 

rotor. The generator curve should coincide with this line as closely as possible. The 

formula for the cubic lines can be found by combining formula 4.1 and 4.8 which 

results in: 

 

         4 *  * Cp * R5 * n3 

 P = -------------------------          (W) ( 8.1) 

                54000 * 3      

 

4  Determination of the Q-n curves of the rotor. Using formula 4.3 and 4.8, the 

procedure is identical to that described for the P-n curves. The line which connects 

points with the same wind speed is the Q-n curve for that wind speed. The line 

which connects points with the same Cq and  is a quadratic line. Note that the 

optimal quadratic line through the points Cq = Cq opt, does not go through the 

maxima of the Q-n curves. To observe of the starting behaviour it is enough to draw 

only the part of the Q-n lines that are for low values of  and for low wind speeds. 

These lines can be compared with the Q-n curve of a generator at low rpm which is 

mainly due to the “sticking” torque and bearing friction. The formula for the 

quadratic lines can be found by combining formula 4.3 and 4.8 which results in: 

 

         3 *  * Cq * R5 * n2 

 Q = ---------------------------          (Nm) ( 8.2) 

              1800 * 2      

 

5  Next a generator is chosen with a certain type and a certain size. The armature 

volume roughly determines the maximum torque level and this determines the 

maximum rated wind speed for a certain rotor diameter and a certain opt. For small 

windmills it is advised that you use a standard 3-phase motor which is provided 

with a permanent magnet armature. All VIRYA windmills, designed by Kragten 

Design, use this kind of generator. If the windmill rotor is mounted directly on the 

generator shaft, the required shaft diameter may determine the minimum generator 

size. 

 

6  Next a transmission system with a certain speed up gear ratio i is chosen. One 

should know or estimate the efficiency of the transmission tr. For transmissions 

like V-belts, the efficiency depends very much on the torque which is transmitted. 

For small windmills it is advised to use a slow running generator without a 

transmission system, so i = 1 and tr = 1. 
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7  The chosen generator characteristic should be measured on a test rig for the 

rotational speed range which can be expected if it is used as a windmill generator. It 

is advised to measure not only for the chosen battery voltage but also for higher and 

lower voltages. It should also be tested unloaded and short-circuited. Q-n, U-n, I-n, 

Pmech-n, Pel -n and gen-n curves should be drawn for all measured conditions. 

  

8  If one has chosen a speed up gear ratio, the generator curves have to be translated to 

the rotor shaft. This can be done using the formulas: 

 

 n = ngen / i        (-) ( 8.3) 

 

 P = Pmech / tr        (W) ( 8.4) 

 

 Q = Qgen * i / tr           (Nm) ( 8.5) 

 

 If there is no transmission i = 1 and tr = 1 and this step is unnecessary. 

 

8 Next the (translated) Pmech-n and the Pel-n curves of the generator are drawn on the 

P-n graph of the windmill rotor. Optimal matching is realised if the Pmech-n curve of 

the generator crosses the optimal P-n curve of the windmill at two points where the 

wind speeds are about 4.5 and 8.5 m/s (see P-n graph VIRYA-3.3 windmill fig. 8.1 

line “optimal”). Matching is good if the two lines touch each other or if there is a 

small distance between the two lines (see line “good right”). Matching is also good 

if the two lines cross at wind speeds of about 3 and 9.5 m/s (see line “good left”). If 

the points of intersection are far apart, matching is bad (see line “bad left”). If the 

distance between the lines is large, matching is also bad (see line “bad right”).  
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Fig. 8.1  Optimal, good and bad matching 
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If the matching is bad something should be changed. This may be the rotor 

diameter, the optimal tip speed ratio, the gear ratio, the number of windings of a 

coil, the way the coils are connected to each other, the method of rectification (star 

or delta), the number of armature poles or the strength of the magnetic field in the 

air gap. After modification, the matching has to be checked again. If the generator 

has been modified mechanically it will be necessary to measure it again. If only the 

winding is modified one may estimate a modified generator curve. 

 If the number of turns of a coil are doubled, the same generator curves will be 

found for the double voltage (if the total copper area of all wires in one stator 

groove is kept the same). The voltage halves if two coils which were connected in 

series are connected in parallel. 

 

10  The Q-n curve of the generator is drawn on the Q-n graph of the windmill for low 

rotational speeds and low wind speeds. It can be seen at which wind speed the rotor 

Q-n curve just touches the generator curve. This is the starting wind speed. If the 

Q-n curve of the generator is near horizontal at low rpm, touching will take place at 

about zero rpm. In this case the starting wind speed can be determined by 

comparing the starting torque of the rotor with the sticking torque Qs of the 

generator. The starting wind speed Vstart for a gear ratio i = 1 can be calculated with: 

 

                              Qs  

 Vstart =    (-------------------------)         (m/s) ( 8.6) 

              Cq start *  ½ * R3 

 

11  Next the Pel-V curve is determined in the following way. The point of intersection 

of the Pmech-n curve of the generator with the P-n curve of the windmill for a certain 

wind speed, e.g. V = 3 m/s, is the working point for that wind speed (see example 

fig. 8.3). The rotor will turn with the rpm of the working point (if the rotor is not 

accelerating). The electrical power Pel at the rpm of the working point can be found 

by going straight downwards, until the Pel-n curve is crossed. This point of 

intersection gives Pel for V = 3 m/s. The same procedure is repeated for higher wind 

speeds. All values found for Pel are plotted against V in the Pel-V curve. The Pel-V 

curve determined in this way should be identical to the curve which one could 

measure if the complete windmill was placed in front of a large open wind tunnel. 

In literature the Pel-V curve is often called the P-V curve but one usually means the 

electrical generator power and not the mechanical power on the rotor shaft.  

  At a certain wind speed the safety system to limit the rotor speed and thrust 

will come into action. The VIRYA windmills make use of the so-called hinged side 

vane safety system which gradually turns the rotor out of the wind above wind 

speeds of about 7 m/s. The Cp- curve of the rotor changes because of the safety 

system. The changed Cp- curves of the rotor can be determined if the characteristic 

of the safety system is known. For a safety system which turns the rotor out of the 

wind one must know the -V curve.  is the yaw angle being the angle between the 

wind direction and the rotor axis. In chapter 7 it is explained how Cp and  change 

depending on the yaw angle. So for each new yaw angle, values for Cp and  can be 

found. 



 57 

The Pel-V curve cannot be measured accurately in the field. This is because the 

wind speed measuring device, e.g. a cup anemometer, must be placed at a certain 

distance from the rotor. Depending on the wind direction, the wind speed will be 

measured too early or too late. The measured wind speed will also be too low if the 

cup anemometer is situated behind the rotor. Another problem is that real wind is 

never constant and that the rotor will accelerate and decelerate. So one has to select 

periods for which the wind speed and the rotational speed of the rotor have been 

constant for at least some seconds.  

 Sometimes Pel-V curves are given which are based on the 10 min average wind 

speeds measured in the field. Such a Pel-V curve will lie above a Pel-V curve which 

is based on the momentary wind speeds, so the result is too optimistic. The 

difference depends on the rate of fluctuation of the wind during the measuring 

periods.  

 

12  Finally the Pel-V curve can be used to estimate the electric energy in kWh which 

will be generated during a certain period. However for this one needs the wind 

speed distribution for the site where the windmill will be placed. The wind speed 

distribution is determined from wind speed measurements over a long period. 

Determination of the wind speed distribution is beyond the scope of this report. The 

wind speed distribution gives the fraction of the time for which the wind speed was 

within a certain wind speed interval. Instead of the fraction one may give the 

number of hours per month or per year. Normally a wind speed interval has a width 

of 1 m/s. So the wind speed distribution gives the fraction of the time for which the 

wind speed is between 0 and 1 m/s and between 1 and 2 m/s and between 2 and 3 

m/s and so on. The energy for each wind speed interval Ei is calculated for a certain 

period using the formula: 

 

 Ei = Pel * t         (kWh)                 (for Pel in kW and t in hours) ( 8.7) 

 

Addition of the energy of all wind speed intervals gives the total energy Etot for the 

chosen period. Etot is given by: 

 

 Etot =  Ei         (kWh) ( 8.8)

 

The whole calculation is an estimation because the fluctuations of the real wind 

speed during a certain period will always differ from the wind speed distribution.  

 

Example: Suppose one wants to calculate the estimated energy which will be 

produced during a year. A year has 8760 hours. Suppose the fraction of the wind 

speed interval between 4 and 5 m/s is 0.1. This means that the wind speed is 

between 4 and 5 m/s during 876 hours a year. Now one looks at the Pel-V curve and 

determines Pel for a wind speed of 4.5 m/s (being the average of 4 and 5 m/s). 

Suppose that Pel = 120 W = 0.12 kW for V = 4.5 m/s. Using formula 8.7 for 

Pel = 0.12 kW and t = 876 h, it is found that Ei = 105.1 kWh. This is repeated for all 

other wind speed intervals. The total energy Etot for all wind speed intervals is 

found using formula 8.8. 
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8.4  Example of matching 

 

The P-n curves and the Pel-V curve will now be derived for the VIRYA-3.3 windmill. 

The blade geometry was calculated in section 5.4.2. The estimated Cp- curve was 

determined in section 6.5. The VIRYA-3.3 windmill is provided with a 4-pole 

permanent magnet generator with a 3-phase winding which is rectified in delta. The 

windmill rotor is mounted directly to the generator shaft so the gear ratio i = 1. The 

generator is made from a standard asynchronous motor which is provided with a new 

armature with neodymium magnets.  

 The rpm range, used for the windmill (0 - 320 rpm), is much lower than the original 

motor speed (1450 rpm) and therefore the original 220/380 V winding can be used for 

24 V battery charging. The measured generator characteristics are given in report 

KD 01, Measurements performed on the VIRYA-3.3 generator (ref. 9.9).  

 The VIRYA-3.3 windmill is provided with a so-called hinged side vane safety 

system which turns the rotor out of the wind above a certain wind speed. This safety 

system is described in report KD 485, Safety systems for small wind turbines which 

turn the rotor out of the wind at high wind speeds (ref. 9.10). An estimated -V curve 

for the VIRYA-3.3 windmill is given in fig. 8.2.  
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Fig. 8.2  Estimated -V curve for the VIRYA-3.3 windmill 

 

This estimated -V curve is expected to follow the ideal curve  = arc cos Vrated/V for 

wind speeds above V = 11 m/s (corresponding yaw angle  = 30° for V = 11 m/s).  The 

theoretical Vrated for the given ideal -V curve is 9.5263 m/s (can be calculated from the 

point V = 11 m/s and  = 30°). The maximum power is reached at a wind speed of 11 

m/s because the -V curve does not follow the ideal curve for wind speeds below 

11 m/s. Vrated = 11 m/s is therefore the real Vrated.  

 The component of the wind speed perpendicular to the rotor plane is constant for 

the ideal curve. Therefore identical P-n curves will be found for wind speeds larger than 

V = 11 m/s.  
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The P-n curves are determined using values for Cp and  which are corrected for the 

effect of the yaw angle . How yawing influences Cp and was explained in chapter 7. 

The formulas for n and P first are made more specific for the VIRYA-3.3 rotor in the 

following way: 

 

Formula 7.1 with R = 1.65 m gives: 

 

n = 5.787 *  * cos* V        (rpm) ( 8.9) 

 

Formula 7.10 with  = 1.2 kg/m3 and R = 1.65 m gives: 

 

P = 5.132 * Cp * cos3 * V3         (W) ( 8.10) 

 

The calculated values for n, P, nand P are given in table 8.1. The values in table 8.1 

are used to produce the P-n curves given in fig. 8.3. The measured Pmech-n and Pel-n 

curves of the generator are also shown in fig. 8.3. The Pel-V curve, derived from 

fig. 8.3, is given in fig. 8.4. 
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(W) 

n 

(rpm) 

P 

(W) 

n 

(rpm) 

P 

(W) 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0.015 17.4 2.1 23.1 4.9 28.9 9.6 34.7 16.6 40.5 26.4 46.2 39.3 51.3 53.6 54.4 53.6 55.1 66.5 

 0.08 34.7 11.1 46.3 26.3 57.9 51.3 69.4 88.7 81.0 140.8 92.5 209.3 102.6 285.9 108.8 340.7 110.3 345.9 

 0.21 52.1 29.1 69.4 69.0 86.8 134.7 104.2 232.8 121.5 369.7 138.7 549.5 153.9 750.4 163.1 894.3 165.4 931.7 

 0.35 69.4 48.5 92.6 115.0 115.7 224.5 138.9 388.0 162.0 616.1 184.9 915.9 205.2 1251 217.5 1490 220.5 1553 

 0.40 86.8 55.4 115.7 131.4 144.7 256.6 173.6 443.4 202.5 704.1 231.2 1047 256.5 1429 271.9 1703 275.6 1775 

 0.35 104.2 48.5 138.9 115.0 173.6 224.5 208.3 388.0 243.1 616.1 277.4 915.9 307.8 1251 326.3 1490 330.8 1553 

 0.2 121.5 27.7 162.0 65.7 202.5 128.3 243.1 221.7 283.6 352.1 323.6 523.4 359.0 714.7 380.7 851.7 385.9 887.3 

 0 138.9 0 185.2 0 231.5 0 277.8 0 324.1 0 369.9 0 410.3 0 435.0 0 441.0 0 

 

 

table 8.1  Calculated values for n, P, n and P as a function of V, and  
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Fig. 8.3  P-n curves of the VIRYA-3.3 windmill 
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Fig. 8.4  Pel-V curve of the VIRYA-3.3 windmill 
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Finally the starting wind speed is calculated. From the report of the generator 

measurements (ref. 9.9), it can be found that the sticking torque Qs = 0.6 Nm. 

 

Formula 8.6 with Qs = 0.6 Nm, Cq start = 0.01,  = 1.2 kg/m3 and R = 1.65 m gives: 

Vstart = 2.7 m/s.  

 

At this wind speed the rotor torque is equal to the sticking torque of the generator. 

However to really start, the rotor torque must be somewhat higher than the sticking 

torque because some torque is required to accelerate the rotor. In practice the windmill 

will start rotating at a wind speed of about 2.9 m/s. The cut-in wind speed Vcut-in is 

defined as the wind speed were the windmill starts to generate electricity. From fig. 8.4 

it can be seen that Vcut-in = 3 m/s. This means that the windmill rotor will start rotating at 

a wind speed just below the cut-in wind speed which is favourable because this prevents 

hysteresis effects.  

 If Vstart is higher than Vcut-in hysteresis effects will occur at the wind speed interval 

between Vcut-in and Vstart. The rotor will generate electricity only if a wind speed above 

Vstart had occurred before, so if the rotor is already rotating. 

 The windmill rotor will stop at a wind speed which is much lower than the starting 

wind speed. It stops at the wind speed for which the maximum rotor torque is equal to 

the unloaded generator torque. For the VIRYA-3.3 windmill it has been measured that 

this occurs at a very low wind speed of about 1 m/s. 
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